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Abstract 

Microbial communities such as those residing in the human gut are highly diverse and complex, and many with 
important implications for health and diseases. The effects and functions of these microbial communities are 
determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular 
states at the transcriptional level. Powerful and scalable technologies capable of acquiring  single-microbe-resolution 
RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communi-
ties together with their hosts are therefore utterly needed. Here we report the development and utilization of a 
 droplet-based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in 
human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed 
for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we estab-
lished a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single 
microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera 
and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, 
we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. 
Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is 
highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the 
understanding of human microbiomes.

Keywords single-microbe RNA sequencing (smRNA-seq), droplet microfluidics, microbiome, host-phage associa-
tion, smRandom-seq2

Introduction
The human microbiome is made up of a huge num-
ber and a large variety of microbes in the gastrointes-
tinal tract and has significant links to various human 

health- and disease-related conditions (Natarajan et al., 
2020; Sharma et al., 2018). The behavior and biological 
effects of a microbial community are determined not 
only by its species composition and diversity but also 
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by the cell states that occur within each microbe. The 
bacterial cell states are heavily influenced by the gene 
transcriptional activity of each microbe included in the 
community (Chong et al., 2014). For instance, previous 
studies reported that Escherichia coli has distinct per-
sistence phenotypes after antibiotic treatment, which 
was caused by the heterogeneity of gene transcrip-
tional activity (Roemhild et al., 2022). Variations in bac-
terial transcriptional states within subpopulations can 
result in differences in essential traits such as antibi-
otic resistance and metabolic capabilities (Smith et al., 
2023), which can have a significant impact on human 
health. Therefore, it is necessary to adopt further 
approaches to achieve a complete functional charac-
terization of host-associated microbes, given the well-
known functional heterogeneity among populations of 
bacteria.

The advancement of single-cell RNA sequencing 
and its successful application in mammalian systems 
in the last decade has shed light on the tremendous 
transcriptional heterogeneity of cell types and states 
and transformed biological research in multiple fronts 
(Han et al., 2021; Klein et al., 2015; Paik et al., 2020; 
Papalexi et al., 2018; Van de Sande et al., 2023; van der 
Leun et al., 2020). Of note, several bacterial scRNA-seq 
methods [for instance microSPLiT (Kuchina et al., 2021), 
PETRI-seq (Blattman et al., 2020), MATQ-seq (Imdahl 
et al., 2020), par-seqFISH (Dar et al., 2021), ProBac-
seq (McNulty et al., 2023), BacDrop (Ma et al., 2023), 
smRandom-seq (Xu et al., 2023a)] have been devel-
oped recently. Nevertheless, among several major lim-
itations, the current microbial techniques are limited 
to well-characterized taxa and still not applicable to 
clinical- and physiology-relevant human microbiome 
samples yet. Consequently, the studies using the exist-
ing methods only looked at population heterogeneity 
in few well-characterized bacteria, such as artificial 
lab-generated culture mix. Therefore, a single-microbe 
RNA sequencing (smRNA-seq) technique for poorly- 
characterized and complex microbial communities in 
the world is critically needed.

In this study, we introduce smRandom-seq2, a 
high-throughput and high-resolution smRNA-seq 
method that is highly adaptable to complex microbial 
communities. Through the analysis of four fecal sam-
ples collected from healthy human subjects, we success-
fully obtained 29,742 single microbe barcodes from the 
gut samples. We further developed an analysis pipeline 
for microbe annotation and bacteria-phage transcrip-
tional activity in the complex microbial community. All 
in all, we demonstrate that smRandom-seq2 is a novel 
sequencing technique for investigating single microbe 
transcriptional activity and can provide insights into the 
functional heterogeneity and interplay between bacteria 
and bacteriophages in the human gut microbiome.

Results
Overview of the smRandom-seq2 technique
The gut microbiome presents unique difficulties for 
smRNA-seq due to its complexity and low efficiency of 
RNA capture for diverse species. To increase the effi-
ciency of reverse transcription for all species and reduce 
cross-contamination, we designed a set of random prim-
ers with “GAT” three nucleotides and pre-indexes based 
on previous works (Sheng et al., 2017; Xu et al., 2023b). 
The fixed bacteria were evenly divided into 12 tubes for 
reverse transcription (RT) reaction with the pre-indexed 
random primers (Fig. 1). The underlying basis for the 
primer optimization in smRandom-seq2 is that the com-
position of human microbial community is much more 
complicated than cultured bacteria, which causes the 
capture efficiency of common random primers signifi-
cantly decreased, leads to the bacteria capture bias and 
results in a low number of species and genes detected 
in the microbial community samples. So we systemati-
cally optimized the random primer in smRandom-seq2. 
We have screened different random and semi-random 
primer designs, and a set of GAT random primers with 
the highest efficiency was ultimately selected. And the 
results showed that the novel design of GAT random 
primers named PIX-1 showed the highest cDNA yield 
(Fig. S1A, the 12 random primers are shown in Tables S1 
and S2).

Subsequently, a poly (dA) tailing step was performed 
to add poly(A) tails on the 3ʹ side of the cDNAs inside 
the bacteria. To effectively barcode individual bacteria, 
we developed an automated droplet collection system to 
generate smaller droplets with smaller poly (T) barcoded 
beads than the preceding inDrop platform wherein drop-
lets were ~240 μm and beads measured around ~60 μm, 
our study adopted diminutive dimensions of droplets 
(~80 μm) and beads (~40 μm) (Fig. S2, the barcoded prim-
ers are shown in Table S2). By utilizing smaller droplets, 
we effectively increase the bacteria count within each 
droplet of the same volume. In addition, the reduced 
volume of smRandom-seq2 leads to higher cDNA con-
centrations in the reaction systems. This system allowed 
for the efficient generation of unique barcodes for each 
bacterium’s cDNAs and will help to increase the cap-
ture efficiency in smRandom-seq2. After barcoding, the 
cDNAs were pooled and PCR amplified for sequencing.

Analysis methods for scRNA-seq data in mamma-
lian systems have been well-developed in recent years. 
However, these methods could not be applied to smR-
NAs from a complex microbial community for several 
reasons: (1) Current scRNA analysis methods were all 
based on a few species with well-annotated reference 
genomes. However, in the microbiome samples, various 
bacteria species were included in one smRNA dataset. 
It is difficult for the gene expression level quantification 
in each single microbe by a high-quality genome and its 
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gene annotation. (2) Diverse bacteria exist in a microbial 
community. Even with the gene expression generated 
in each single microbe, how to integrate the expression 
data from multiple bacteria species is still a challenge. 
(3) Relationships between bacteria and phages in the 
human gut were mainly statistically speculated using the 
metatranscriptomic datasets up to now and no method 
could directly dissect the host-phage associations in 
smRNA-seq data. To solve these problems, we developed 
a computational pipeline, which contained three mod-
ules, single microbe annotation (MIC-Anno), the bacte-
ria (MIC-Bac), and phage (MIC-Phage) transcriptional 
activity analysis, for smRNA-seq dataset from complex 
microbial community (Fig. 1). By the above pipeline, we 
are able to obtain accurate taxonomic information for 
each microbe and further bacterial and host-phage asso-
ciation analysis from the smRNA-seq (smRandom-seq2) 
data.

Validation of smRandom-seq2 performance 
using mock microbial communities
We conducted the smRandom-seq2 assay on a mock 
community consisting of both gram-negative bacteria 
(E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, and 
P. aeruginosa) and gram-positive bacteria (Staphylococcus 
aureus) to validate the optimized methods. Prior to 
microfluidic encapsulation, we confirmed the single 
bacterial morphology and manually counted the bac-
teria under a microscope. We evaluated the efficiency 
of droplet barcoding under a microscope, and assessed 
the quality of the resulting cDNA library using electro-
pherograms. During the loading procedure, the number 
of loaded cells into the mocrofluidic device was ~10,000, 
about 50 μL droplets containing 2,500 cells were used 
for further experiments. Finally, we recovered 1,103 cells 
(~44% cell recovery rates) with the expression of a mini-
mum of 98 genes per cell. The obtained bacterial library 

Figure 1. Overview of smRandom-seq2 and data analysis. First part is experimental methodology and workflow of smRandom-
seq2. The second part is a single microbe data analysis pipeline for smRandom-seq2 data. After taxonomic annotation (MIC-Anno), 
each cell (barcode) will be assigned a taxonic information, and further clustered and heterogeneity and host-phage association 
analysis using MIC-Bac and MIC-Phage.
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was further sequenced and their RNA profilings were 
visualized with Uniform Manifold Approximation and 
Projection (UMAP) dimensionality reduction and dis-
played clearer separation (Fig. 2A). The results demon-
strate that smRandom-seq2 efficiently captured mRNA 
from each bacterial species, with an average median 
count of 260 genes per cell for A. baumannii (449), E. coli 
(248), S. aureus (303), K. pneumoniae (155), and P. aerugi-
nosa (166) (Fig. 2B). The median purity of each species is 
between 0.90 and 0.99 (Fig. S3D). The technical repeat-
ability of the smRandom-seq2 was verified by high cor-
relation (R = 0.90, P < 2.2 × 10−16) on gene expressions 
among replicates (Fig. S3G). In addition, our analysis 
results showed that only 0.9% of the sequenced reads 
were mapped to the non-coding regions in the genome, 
which is significantly lower than the total non-coding 
regions percentages (11.26%) in the reference genome. 
These results demonstrated that little DNA contamina-
tion existed in smRandom-seq2.

Transcriptional activity landscape of individual 
bacterium in a human gut microbiome
We first proceeded to apply the smRandom-seq2 tech-
nology to a human fecal sample from a healthy donor. In 
total, 8,478 cells were captured from the sample and an 
average depth of 12,782 reads per cell (unique barcode). 
As the human gut microbiome contained many bac-
terial species, we first applied MIC-Anno for bacterial 
annotation in the gut dataset. Based on the annotation 
results, we identified 98 species in the gut microbi-
ome. Among them, 15 genera were a higher abundance 
than 1% (Fig. 3A) and the top five abundant genera 
were Prevotella, Phascolarctobacterium, Clostridium, Dorea, 
and Roseburia. To validate the bacterial percentages or 
composition, we also performed metatranscriptome 
sequencing on the same gut samples and calculated 

the species abundance using MetaPhlAn2. The results 
showed that the bacterial abundance by smRandom- 
seq2 was significantly correlated with metatranscrip-
tome sequencing (R = 0.98, P < 0.001), suggesting that 
smRandom-seq2 could capture different bacterial spe-
cies in the gut microbiome without obvious bias (Fig. 
S4A). To investigate whether there was mixed contam-
ination between barcodes in the smRandom-seq2, we 
further evaluate the purity (reads percentage of the 
corresponding annotation taxon) of each barcode in 
different genera (Fig. S4B) and the results indicated 
that most of the barcodes had a high purity (> 90%). At 
the species level, the median purity of each species is 
between 0.89 and 0.95.

We further used MIC-Bac to acquire single bacte-
rial gene expression data of the gut microbiome for 
the smRandom-seq2 data. The proportion of rRNA in 
this microbiome sample is 75.30%. Upon analysis sub-
sequent to rRNA removal, each bacterium, on aver-
age, encompasses 3,158 non-rRNA reads. Despite the 
absence of rRNA depletion during sequencing, the 
quantity of non-rRNA sequences within the samples is 
sufficient to facilitate subsequent analysis of bacterial 
gene functions. After removing rRNA genes, for each 
genus in the gut microbiome, we detected 170, 186, 386, 
167, 209, 211, 128, 272, and 218 median genes per cell 
in genera Prevotella, Phascolarctobacterium, Clostridium, 
Dorea, Roseburia, Lachnospira, Faecalibacterium, CAG-81, 
and Fusicatenibacter, respectively (Fig. S4C). The most 
highly detected expressed genes encode ribosomal 
proteins and translation elongation machinery. Based 
on the integrated gene expression count matrix of all 
barcodes, 11 cell clusters or the gut microbiome tran-
scriptomic states were grouped (Fig. S4D). Based on the 
taxonomic annotation results, the 11 cell clusters were 
assigned to 9 bacterial genera which included Prevotella, 
Clostridium, Fusicatenibacter, Dorea, CAG-81, Roseburia, 

Figure 2. Performance of smRandom-seq2 on a mock microbial community with five known species. (A) UMAP plot of the 
smRandom-seq2 cells and clusters colored by species. (B) Distribution of gene count of the five bacterial species clusters by 
smRandom-seq2. The median gene count of each species is presented at the top of the violin plot. The mock community includes  
A. baumannii (A. b), E. coli (E. c), K. pneumonia (K. p), P. aeruginosa (P. a), and S. aureus (S. a).
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Phascolarctobacterium, Faecalibacterium, and Lachnospira 
(Fig. 3B). At last two clusters were included in the 
Prevotella genus (Cluster #0, #10) and Roseburia genus 
(Cluster #6, #9), respectively. To investigate the potential 
functional heterogeneity in these two genera, we further 
annotated the Prevotella and Roseburia clusters at species 
level.

Distinct adaptive response states among species 
in the human gut microbiome
In the Prevotella genus, a total of 1,755 cells were identi-
fied as 11 Prevotella species, most being P. copri (79%) and 
P. sp900767615 (7.2%), which corresponded to Cluster #0 
and Cluster #10, respectively (Fig. 3C). P. copri is a well-
known dominant bacterial species in the human gut 
(Prasoodanan et al., 2021). To further validate the anno-
tation results, we assembled the transcriptome based 
on the reads in all barcodes of corresponding species. 
The assembled transcripts of P. copri and P. sp900767615 
were mostly assigned to the available genomes of the 
corresponding species. To investigate functional differ-
ences between the two Prevotella species, we identified 
the differentially expressed genes (DEGs) between them 
(Table S3). Interestingly, we found that DEGs related 

to adaptive cellular responses pathways, e.g., rcsC1, 
rcsC2, rcsC5, rcsC7, were significantly up-regulated in P. 
sp900767615 than P. copri and other Prevotella species 
(Fig. 3D). These up-regulated genes were sensor histidine 
kinases which regulated adaptive cellular responses to 
chemical or physical state of the environments. The 
results indicated the functional heterogeneity as adap-
tive responses existed among species in the Prevotella 
genus.

In the Roseburia genus, a total of 712 cells were identi-
fied as three Roseburia species, including R. hominis (36%), 
R. intestinalis (18%) and R. sp900552665 (46%), which 
related to Cluster #6 and Cluster #9, separately (Fig. 3C). 
The R. hominis and R. intestinalis are familiar bacterial 
species in the human gut. To investigate the functional 
differences between the three Roseburia species, we iden-
tified DEGs among them (Table S4). The genes related to 
cell motility, e.g., hag1, were significantly up-regulated 
in R. hominis (Fig. 3D), which consistent with previous 
report about R. hominis being a flagellated gut anaerobic 
bacterium (Patterson et al., 2017). In addition, the DEGs 
related to adaptive-response sensory (e.g., sasA3) and 
multidrug resistance (e.g., mdtC) are highly expressed 
in R. intestinalis. In summary, the results indicated that 

Figure 3. Bacterial gene expression landscape in a human gut microbiome. (A) Bacteria proportion of each genus identified in the 
smRandom-seq2 dataset. (B) UMAP plot of the smRandom-seq2 cells and clusters colored by genus taxonomic annotation using 
MIC-anno. (C) UMAP plot of the clusters colored by species of Prevotella and Roseburia genus. (D) Dot plot of significantly up-regulated 
genes in species in the Prevotella (left) and Roseburia (right) clusters.
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smRandom-seq2 could sensitively capture functional 
heterogeneity among bacterial species in a complex 
microbial community.

Intra-population adaptive strategy heterogeneity 
in the human gut microbiome
Among all barcodes (cells) identified in the gut microbi-
ome, Phascolarctobacterium is one of the most abundant 
genera. Phascolarctobacterium can produce short-chain 
fatty acids, including acetate and propionate, and asso-
ciates with the metabolic state and mood of the host. 

Interestingly, all cells of the Phascolarctobacterium genus 
came from one species, P. succinatutens, which is an obli-
gately anaerobic and gram-negative bacterium and col-
onizes the human gut (Ikeyama et al., 2020). We next 
analyzed the P. succinatutens smRNA data to understand 
whether it contained any intra-population functional 
heterogeneity in transcriptional states. In the gut micro-
biome, we identified three major subpopulations in both 
replicates using an unsupervised clustering approach 
(Fig. 4A) and further identified the DEGs among the three 
subpopulations (Fig. 4B; Table S5).

Figure 4. Functional heterogeneity in Phascolarctobacterium succinatutens in human gut microbiome. (A) UMAP plot shows three 
clusters (subpopulations) of P. succinatutens under 0.5 resolution of Seurat package. (B) Dot plot shows significantly up-regulated 
genes in the three subpopulations of P. succinatutens. (C) Gene expression level correlations between the mobile genetic elements 
related genes and multidrug resistance genes in subpopulation 1. (D) The genes in subpopulation 2 significantly up-regulated in 
succinate metabolism pathways in P. succinatutens. ISClte1:IS3 family transposase ISClte1. IS663: IS1182 family transposase IS663. ISL7: 
IS30 family transposase ISL7. mdtK: Multidrug resistance protein MdtK. mdtG: Multidrug resistance protein MdtG. mdtB: Multidrug 
resistance protein MdtB. scpA: Methylmalonyl-CoA mutase. mutB: Methylmalonyl-CoA mutase large subunit. pccB: Propionyl-CoA 
carboxylase beta chain.
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Among the cells from P. succinatutens, 22% of them fell 
into the subpopulation 1. Based on differential expression 
analysis, we found the DEGs related to mobile genetic 
elements (MGEs), e.g., ISClte1, IS663, and ISL7, which pro-
mote the evolution of antibiotic resistance, had signif-
icantly higher expression levels in the subpopulation 
(Figs. 4B and S5A). Interestingly, we indeed found that 
many multidrug resistance genes, e.g., mdtB, mdtC, mdtG, 
mdtK, and adaptive cellular responses related genes, e.g., 
rcsC1, rcsC2, were up-regulated in the subpopulation 1. 
The result provides a possible explanation for the sub-
population’s elevated multidrug resistance frequencies, 
and resistance likely is emerging from this subpopula-
tion. To test this hypothesis, we performed a gene expres-
sion co-occurrence analysis between the MGE genes 
and multidrug resistance genes. Based on the analysis, 
we observed that there was a significant co- occurrence 
relationship between their expressions (Fig. 4C).  
We further measured the mutation frequencies in the 
subpopulation 1 of P. succinatutens. The results confirmed 
the hypothesis, i.e., the intrinsic functional heterogene-
ity driven by MGEs may promote the evolution of antibi-
otic resistance in P. succinatutens.

Based on DEG analysis, we found that genes in suc-
cinate pathway, e.g., mutB, pccB, were significantly high 
expressed in P. succinatutens in subpopulation 2 (Figs. 
4B and S5B). Previous studies suggested that P. succinat-
utens uses succinate as a substrate rather than carbohy-
drates for growth in an energy-limited environment as 
one strategy to survive in the human gut (Ikeyama et al., 
2020). Therefore we further investigated the expression 
level of the genes related to succinate metabolism path-
ways in P. succinatutens (Fig. 4D). Interestingly, among 
the genes involving the main steps of succinate metab-
olism, such as succinyl-CoA and methylmalonyl-CoA, 
most of them had significantly higher gene expression 
level in the subpopulation 2. The results suggested that 
the ability of chemical energy conversion via succinate 
was significantly increased in the subpopulation. Taken 
together, our smRandom-seq2 data revealed different 
adaptive strategies of asaccharolytic bacteria (e.g., P. suc-
cinatutens) in the human gut.

Host-phage activity associations in the human 
gut microbiome
Bacteriophages play extensive and important inter-
active regulatory roles in the human gut microbiome 
(Shkoporov et al., 2022). Given that smRandom-seq2 
can simultaneously encapsulate bacteria as well as 
its associated phages, we further used MIC-Phage to 
investigate the host-phage interactive transcriptional 
relationships in the human gut microbiome at a single 
microbe level. We filtered out rRNA/tRNA sequences 
and then compared the smRandom-seq2 data to the 
Gut Phage Database (Camarillo-Guerrero et al., 2021) 

(GPD). We totally obtained 11.26% unique mapping reads 
of all the smRNAs in the human gut microbiome to 
the GPD database. Based on the taxonomic annotation 
results generated by MIC-Anno, we acquired a phage 
transcriptional profile from nine major genera in the 
human gut microbiome. The number of phages identi-
fied from per bacterium in each genus was 15 to 25. The 
ratio of phage-related sequences identified was different 
among the genera, from Faecalibacterium with the high-
est 19.2% phage-related sequences to the lowest 2.5% in 
the Clostridium (Fig. 5A). We clustered the bacterial cells 
using UMAP-based on transcriptional profiles of both 
phage and bacteria (Fig. 5B). Surprisingly, a very discrim-
inative clustering result was achieved and the UMAP cell 
clusters matched extremely well with the nine major 
genera. Moreover, even it was further subdivided phage 
sequences from genus to species level, cell clustering, 
and taxonomic information still had an excellent con-
sistence (Fig. S6).

According to the above clustering results, we further 
counted the phage-related UMIs to determine expression 
level information of main phage types in each genus. In 
order to verify the accuracy of the host-phage connec-
tivity, we selected the top 20 phages with the most tran-
scriptional activity in each genus (a total of 180 phages) 
identified by MIC-Phage. We estimated sequence sim-
ilarity by mapping the phage to all reference genomes 
of the corresponding bacterial genus. As expected, all of 
the 180 phage genomes could be mapped into the refer-
ence genome with a threshold of alignment length for 
reliable relationship prediction (Fig. 5C). These results 
suggested that MIC-Phage could detect the host-phage 
activity associations in human gut microbiome accu-
rately. In total, 373 reliable host-phage relationships 
were identified in this study (Fig. 5D). Among the host-
phage relationships, at least 325 were newly identified by 
this study, and the rest 48 same as the predicted genus-
level relationships by GPD (Table S6). Notably, the sig-
nificant difference in expression level of phage-related 
genes among genera reflected the characteristics and 
ability of phage-specific infection (Figs. 5B and S6). Taken 
together, the results demonstrated the advantages of 
smRandom-seq2 to establish accurate in vivo host-phage 
activity connectivity.

Application of smRandom-seq2 on three more 
human gut microbiomes
To further validate and extend the generalizability of 
smRandom-seq2 in real-world situations, we went on 
to perform smRNA-seq in three fecal samples from 
healthy human subjects. In total, 21,264 cells were cap-
tured from the three samples, with an average depth of 
13,380 reads per cell. Based on the annotation of MIC-
Anno, the three healthy donors had distinct dominant 
bacteria genus/species in their guts, Prevotella/P. copri in 
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one donor, Neobittarella/N. massiliensis in one donor, and 
Phocaeicola/P. coprocola in another one donor, respectively 
(Fig. 6A–C). The UMAP cell clusters based on the gene 

expression profiles of the samples matched well with the 
bacteria genus and species annotated above (Fig. 6A–C). 
Subpopulations could be identified in some dominant 

Figure 5. Bacterial host-phage transcriptional activity associations in different genera in the human gut microbiome. (A) Number 
of phages identified (up) and the proportion of reads aligned to the gut phage reference genomes in GPD (down) in bacterial cells. 
The data of nine main bacterial genera were shown. (B) UMAP plot of cells from the human gut microbiome based on both phage 
and bacteria smRandom-seq2 data with taxonomic annotation using MIC-Anno. (C) Alignment length distribution of top 20 phages 
identified in the nine genera based on the GPD reference genomes. An alignment length longer than 3 kb (red dashed line) is considered 
as an accurate prediction of host-phage relationship. Top chart indicated the prediction accuracy (%) of host-phage transcriptional 
associations. The rank of the nine genera is same as the above subfigure A. (D) Host-phage associations identified in the nine bacterial 
genera by this study. Beside of those same to the predicted ones by GPD, at least 325 associations were newly identified by this study.
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species (Prevotella copri and Phocaeicola dorei, etc.) (Fig. 
6A and 6B). Meanwhile, we totally identified 256 relia-
ble host-phage activity relationships from the healthy 
donors using MIC-phage (Fig. 6D). All these results sug-
gested that smRandom-seq2 could adapt to various 
human gut microbiomes with distinct microbe commu-
nities and efficiently capture different bacteria species in 
real-world situations.

Discussion
Several bacterial scRNA-seq methods have been devel-
oped recently, including plate-based techniques like 
microSPLiT (Kuchina et al., 2021), PETRI-seq (Blattman 
et al., 2020), MATQ-seq (Imdahl et al., 2020) and probe-
based methods like par-seqFISH (Dar et al., 2021), 

ProBac-seq (McNulty et al., 2023), and droplet-based 
methods like BacDrop (Ma et al., 2023), smRandom-seq 
(Xu et al., 2023a). These developments are timely and 
important. For instance, Kuchina et al. developed micro-
SPLiT and applied it to Bacillus subtilis sampled at dif-
ferent growth stages, and identified the heterogeneous 
activation of a niche metabolic pathway (Kuchina et al., 
2021). Ma et al. applied BacDrop to study K. pneumoniae 
clinical isolates and to elucidate their heterogeneous 
responses to antibiotic stress (Ma et al., 2023). Dar et 
al. applied par-seqFISH to the opportunistic pathogen 
Pseudomonas aeruginosa across dozens of conditions in 
planktonic and biofilm cultures and identified numer-
ous metabolic- and virulence-related transcriptional 
states that emerged dynamically during planktonic 
growth (Dar et al., 2021).

Figure 6. Single-microbe transcriptional landscape and host-phage associations of the gut microbiome in more healthy donors. 
(A–D) UMAP plot of smRandom-seq2 data clusters (A–C) and dot plot of host-phage associations (D) in three more healthy donors 
(HD1, HD2, HD3).
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The currently available techniques however are usu-
ally focused on single well-characterized bacteria spe-
cies, which are not adapted to human microbiome 
research because of the complexity of natural microbial 
communities. There are several critical challenges when 
it comes to clinical- and physiology-relevant human 
complex microbiome samples: (i) The composition of 
human microbial community is much more compli-
cated than cultured bacteria, which causes the capture 
efficiency of common random primers to significantly 
decrease, leads to the bacteria capture bias and results 
in a low number of species and genes detected in the 
microbial community samples. (ii) Compared with cul-
tured bacteria, microbial community samples are more 
prone to bacterial aggregation leading to serious cross- 
contamination in the microbial community sequenc-
ing. (iii) The digestion of different bacterial cell walls in 
microbial community samples leads to the presence of 
bias, which can result in fewer detected bacterial spe-
cies. (iv) The human gut microbiome samples contain 
huge amounts of impurities that will interfere with the 
experiment processes and reactions. (v) Bioinformatics 
tools are not available for dealing with scRNA data from 
a complex microbiome. There are many challenges to 
identifying single microbe and bacteria(host)-phase 
associations based on the limited RNA reads.

In our latest study, we developed a droplet-based 
high-throughput and high-sensitivity smRNA-seq 
method (smRandom-seq2) for complex microbial com-
munities. As compared to the existing smRNA-seq 
methods, smRandom-seq2 overcomes the challenges of 
high species diversity and heterogeneity that are ubiq-
uitously present in real-world microbiome samples. 
The key behind smRandom-seq2’s advances is: (i) In 
 smRandom-seq2, the novel design of random primers 
significantly increases the efficiency of reverse transcrip-
tion for all bacteria species. We have screened hundreds 
of different random and semi-random primer designs, 
and a set of GAT random primers with the highest effi-
ciency was ultimately selected. (ii) In smRandom-seq2, 
the pre-index-based experiment process significantly 
reduces cross-contamination in the single microbe 
sequencing of complex microbial communities. We intro-
duced the pre-index design on the GAT random primers 
to reduce the cross-contamination caused by bacterial 
aggregation. Based on the pre-index strategy, we can dis-
tinguish two bacteria even if they were included in the 
same droplet. Our results showed that the mean species 
purity of barcodes is higher than 95% in smRandom-seq2, 
which is very hard to achieve by other methods on com-
plex microbiomes. (iii) Previous single microbe sequenc-
ing platforms, like BacDrop and other droplet-based 
single bacterial sequencing technologies, are developed 
based on the 10× Genomics single cell barcoding plat-
form, which were primarily developed for eukaryote (like 

human or mouse) single cells and were not efficient for 
single microbe barcoding due to the much smaller size 
of microbes and huge amount of impurities existed in 
microbiome samples. In smRandom-seq2, we developed 
a high barcoding efficiency droplet platform specifically 
suitable for the complex microbiome single microbe 
sequencing. (iv) In smRandom-seq2, we also developed 
a novel computational pipeline for single microbe anal-
ysis in complex microbial communities. This computa-
tional method for the first time solved the problem of 
multiple species single cell analysis, and is extremely 
suitable for single microbe sequencing in complex 
microbial communities. By pooling the smRNA-seq data 
by smRandom-seq2, we are able to obtain accurate tax-
onomic information for each microbe and further bac-
terial and host-phage association analysis. Due to the 
above improvements in this study, we were able to make 
it possible for single microbe sequencing in human gut 
microbiome samples. Compared to the existing single 
microbe RNA sequencing methods, such as microSPLiT 
(median UMI: 235, median gene: 138), PETRI (median 
UMI: 227, median operon: 103), MATQ-seq (mean gene: 
170), BacDrop (mean gene: 90), the UMI and the gene 
number per cell of smRandom-seq2 (median UMI: 1,158, 
median gene: 246) is superior (Fig. S7).

Indeed, the applications of smRandom-seq2 on human 
fecal samples demonstrated that smRandom-seq2 could 
sensitively dissect functional heterogeneity existing 
in complex microbial communities and identify host-
phage activity relationships at the genus and species 
level. smRandom-seq2 can also simultaneously iden-
tify hundreds of bacterial species (many poorly known) 
from the human gut, highlighting its unique advantages 
in the depth and scope of species coverage, and also 
its efficiency. By applying smRandom-seq2 in human 
fecal samples, we have generated tens of thousands of 
human single microbes that the research community 
can readily access and utilize. Together, our results sup-
port that smRandom-seq2 has the potential for a variety 
of biomedical and even clinical research, from under-
standing the microbiome functional changes, and bac-
teria dynamic communications, to bacteria metabolic 
networks and host-microbiome interactions and so on. 
We also aim smRandom-seq2 to be highly user-friendly 
and cost-effective, enabling many labs and hospitals to 
rapidly adapt smRandom-seq2 for their research and 
discovery needs, or even clinical management needs in 
the future. Furthermore, the ability for smRandom-seq2 
to capture microbiome transcriptional status in single 
microbe resolution promises new avenues for the under-
standing of complex microbial communities and their 
functional impact on human health.

Based on the systematic phage analysis in sin-
gle microbes, we found majority of the phages were 
related to actively transcribed prophages. After further 
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investigations, we found a vast majority of these phage-
aligned reads (over 85%) can be mapped to bacterial 
genomes. This indicates that the majority of viruses 
are at prophage status, and the transcription activity of 
prophages was significantly related to the adaptive states 
of the bacteria in the human gut microbiome. Among the 
373 reliable predicted host-phage relationships we iden-
tified, each phage species is essentially associated with 
a specific bacterial genus. Only 8 bacteriophages exhibit 
associations with multiple bacterial genera. Many of 
these phages among them are uncultivable, thus a sub-
stantial portion lacks taxonomic and genomic informa-
tion in the dataset (only 16,636 out of 142,809 phages 
possess family-level information). Among the 373 host-
phage relationships we identified in the gut microbiome 
sample, we identified 18 relationships involving hosts 
and phages with clearly identified taxonomic informa-
tion. These phages primarily belong to Caudovirales order 
and one Microviridae family bacteriophage. These 18 
relationships are all consistent with the current research 
findings and predictive results (Fujimoto et al., 2021; 
Manrique et al., 2016; Mayneris-Perxachs et al., 2022). 
In addition, we uncovered that these prophage-related 
bacterial functional genes primarily engage in pivotal 
functional pathways, notably arginine and tryptophan 
metabolism. Remarkably, these findings align with the 
research documented by Fujimoto et al. (Fujimoto et al., 
2021). Additionally, some functional genes such as htpG 
exhibit a correlation with bacterial stress protection, 
suggesting their potential role in enhancing the coexist-
ence of bacteria with prophages that support resilience.

There are several potential avenues for further 
improvement and expansion of our technique. First, 
although smRandom-seq2 could capture thousands of 
single microbes in microbiome samples, the through-
put is still far from the real bacteria number in nat-
ural microbial communities. The design with more 
barcodes and smaller droplets has the potential to 
substantially increase the throughput of this method. 
Second, the development of a universal rRNA depletion 
method would avoid the sequencing of non-messenger 
transcripts, thus reducing the cost of sequencing. In 
smRandom-seq2, we detected a ribosomal RNA (rRNA) 
proportion ranging from 75% to 95% among the sam-
ples. Even without rRNA depletion, we observed a higher 
number of genes compared to existing single-bacteria 
RNA sequencing methods, and we have not yet reached 
saturation which suggested more genes could be cap-
tured when the sequencing depth increased (Fig. S8A). 
Thirdly, it is possible that the different clusters within 
the same taxonomic group represent different strains in 
the same species. The reason is that the single microbe 
annotation method (MIC-Anno) could only classify the 
barcode into species taxon level. So the different clus-
ters could represent the transcriptional/functional 

differences between the clusters in one species, which 
could be both the same or different strains. Fourthly, 
exploration of additional capture and separation meth-
ods for both host and microbe cells could enable dissect-
ing the transcriptional activity in both human cells and 
single microbes in the same sample, leading to a deep 
understanding of the host-microbe interactions in the 
human gut. Furthermore, combining smRandom-seq2 
with other multi-omics techniques, such as proteomics 
and metabolomics, will able to capture the functional 
changes of single microbes in multiple layers, and signif-
icantly advance our understanding of the complex inter-
play between the microbes and host in human health 
and disease.

Materials and methods
Bacterial culture and collection
The bacteria used for the experiment are E. coli BW25113 
(E. coli), A. baumannii ATCC17978 (A. baumannii), K. pneu-
moniae XH209 (K. pneumoniae), Pseudomonas aeruginosa 
PAO1 (P. aeruginosa) and S. aureus subsp. Aureus SA268 
(S. aureus), which were obtained from Sir Run Run Shaw 
Hospital, Zhejiang University School of Medicine. The 
bacteria were cultured overnight in LB liquid medium 
(Sigma Aldrich, L3522) at 37°C with shaking (250 rpm). 
Based on the purpose of different experiments, cultures 
of different bacterial stains were sampled upon reach-
ing the OD600 ~0.2, and immediately centrifuged at 4°C, 
6,000 ×g for 2 min, next washed twice by PBS, and mixed 
before applied with smRandom-seq2.

Human fecal sample collection
The fecal samples were collected from four healthy 
donors. The study protocol was approved by the Ethics 
Committee of the First Affiliated Hospital, Zhejiang 
University School of Medicine, China (2021IIT A0239). 
All the participants provided written informed consent. 
The samples were centrifuged twice at 4°C, 500 ×g for 
3 min to eliminate impurities from the digested food or 
host cells. The obtained samples were then centrifuged 
at 4°C, 3,900 ×g for 5 min to collect the bacteria, ensur-
ing high purity. The bacteria collected were used for fur-
ther smRandom-seq2 or stored at −80°C until needed for 
additional metagenomic sequencing.

Fixation and permeabilization
The bacteria were first fixed with 4% paraformaldehyde 
(PFA) at 4°C overnight, which helps to preserve their 
structure and prevent degradation. Next, the cells were 
washed and incubated with 0.04% Tween-20 in PBS. This 
detergent helps to create small pores or holes in the 
bacterial cell membrane, allowing other molecules like 
enzymes to enter the cell. Then, the cell wall was per-
meabilized with lysozyme (2.5 mg/mL, ThermoFisher, 
90082) and lysostaphin (0.0125 mg/mL, Sigma, L7386). 
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Lysozyme is an enzyme that breaks down the peptido-
glycan layer in bacterial cell walls, while lysostaphin is 
an enzyme that specifically targets and breaks down the 
cell walls of Staphylococcus species. After the digestion 
step, the bacteria were immediately washed and resus-
pended in PBS with RNase inhibitor (ThermoFisher, 
Cat#AM2694), which helps to protect any RNA present 
in the sample from degradation by RNases. For the cell 
loss problem, we conducted a comprehensive evalua-
tion of various centrifugation protocols to mitigate cell 
loss. We explored a range of centrifuge types, including 
those with horizontal and angled rotors, varied capaci-
ties of centrifuge tubes, and diverse centrifugation rea-
gents. After a systematic optimization, we identified 
that employing a centrifuge with a horizontal rotor, 
using 200 μL EP tubes, and resuspending cells in 0.05% 
PBST (Phosphate-Buffered Saline with Tween 20) prior to 
centrifugation yielded the most favorable results. Upon 
completing the experimental workflow, we were able to 
retain over 40% of the initial bacterial population, as 
shown in Fig. S8B.

Reaction in situ
In situ reactions of bacteria were carried out using a com-
mercially available reverse transcription kit from M20 
Genomics (R20114124). The kit contained reverse tran-
scriptase (50 U/µL), 5× reverse transcription buffer, and 
dNTP Mix (100 mmol/L). A 50-µL reaction mixture was 
prepared, consisting of about 5 million bacteria in 27.5 
µL DEPC water, 10 µL 5× reverse transcription buffer, 5 µL 
10 µmol/L random primer (Table S5), 2.5 µL 100 mmol/L 
dNTP, 2.5 µL RNase inhibitor, and 2.5 µL reverse tran-
scriptase (50 U/µL), and subjected to ten cycles of mul-
tiple annealing ramping from 8°C to 42°C, followed by 
a 42°C incubation for 30 min in a thermal cycler. After 
the RT reaction, bacteria were washed five times with 
0.05% PBST. The bacteria were then subjected to dA- 
tailing by adding them to 39 µL DEPC water, followed 
by the addition of 5 µL 10× TdT buffer, 5 µL 2.5 mmol/L 
CoCl2, 0.5 µL 100 mmol/L dATP, and 0.5 µL TdT enzyme, 
and incubated at 37°C for 30 min. The bacteria were sub-
sequently washed with PBST three times.

Microfluidic device fabrication
Microfluidic devices based on PDMS were designed and 
fabricated for the synthesis of hydrogel beads, follow-
ing a previously described protocol (Wang et al., 2020). 
The channel depth of the microfluidic devices used for 
hydrogel bead synthesis was 30 μm, while the devices 
used for cell encapsulation had a channel depth of 50 
μm. To create molds for the microfluidic devices, a pho-
tolithographic method was employed, involving centrif-
ugal coating and modeling of SU-8. Subsequently, PDMS 
(Sylgard-184) was cast onto the silicon molds to fabricate 
the microfluidic devices.

Microfluidic platform
A microfluidic platform for barcoding of single-bacteria 
was established based on previous work (Wang et al., 
2020). The platform equipment comprises display mon-
itors, a pressure controller, a microfluidic chip, and an 
inverted bright-field microscope equipped with a high-
speed camera and a computer for data acquisition and 
analysis.

Barcoded beads synthesis
Hydrogel barcoded beads for single bacterium barcod-
ing were developed based on previous studies and were 
customized by M20 Genomics company (Ko et al., 2021; 
Wang et al., 2020). These hydrogel beads were synthe-
sized using microfluidic emulsification and polym-
erization of an acrylamide-primer mix that includes 
 acrylamide:bis-acrylamide solution, acrydite-modified  
oligonucleotides, ammonium persulfate, and Tris-
buffered saline-EDTA-Triton buffer. The acrydite- 
modified oligonucleotides contain a deoxy Uridine base, 
replacing the photocleavable moiety present in previous 
reports. A carrier oil-TEMED mix was applied in micro-
fluidic to facilitate synthesis. The acrylamide-primer mix 
and carrier oil-TEMED mix were transferred to syringes, 
respectively, and connected to corresponding inlets of the 
hydrogel bead synthesis device. The generated hydrogel 
beads should have a size of 40 μm. The DNA primers on 
the hydrogel beads were barcoded using a combination 
of a split-and-pool method and a 3-step primer ligation 
reaction. Unique barcoded primers were used, and they 
are provided in Table S6. Hydrogel bead mix, DNA ligase, 
dNTP, isothermal amplification buffer, and  nuclease-free 
water were prepared and split into a round-bottom 
96-well plate. The hydrogel bead mix in the 96-well plate 
was mixed with 96 annealed unique barcode primers 
in another 96-well plate, respectively, and then incu-
bated. All hydrogel beads were combined in a single 
tube and washed, and the second and third split-and-
pool rounds were performed. To verify the quality of the 
generated hydrogel barcoded beads, barcoded primers 
were released by Uracil-specific excision reagent enzy-
matic digestion and analyzed with gel electrophoresis. 
The highest molecular-weight peak represents the full-
length barcoding primer, and  lower-molecular-weight 
peaks are synthesis intermediates. All the necessary 
reagents for hydrogel barcoded bead synthesis and the 
ready-to-use hydrogel barcoded beads can be ordered 
from M20 Genomics company.

Droplet barcoding
To perform the modified droplet barcoding for a sin-
gle bacterium, qualified individual bacteria were first 
counted under an optical microscope and then diluted 
with a 15% density gradient solution. Before droplet 
generation, we quantified the bacterial count through 
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microscopy, as depicted below. We then appropriately 
diluted the sample to achieve an optimal concentration 
for the microfluidic loading procedure. We optimized the 
loading approach to achieve approximately 30% of drop-
lets containing bacteria, as opposed to the traditional 
loading strategy where only 10% of droplets contained 
cells. This method ensures that the majority of bacte-
ria are enclosed within individual droplets. Additionally, 
the overloaded bacteria can be distinguished through 
the pre-index sequence. The microfluidic platform was 
used to encapsulate bacteria, 2× DNA extension reaction 
mix, and hydrogel barcoded beads. Both the density gra-
dient solution and 2× DNA extension reaction mix were 
obtained from M20 Genomics. The collected droplets 
were subjected to a series of incubation steps at differ-
ent temperatures: 37°C for 1 h, 50°C for 30 min, 60°C for 
30 min, and 75°C for 20 min. The droplets were then bro-
ken by mixing with PFO buffer, and the oil phase was 
discarded. The aqueous phase containing cDNAs was 
purified using Ampure XP beads. We achieved a prom-
ising 76% success rate in generating unique barcodes 
for individual bacterial cDNAs, and only 2% of droplets 
containing two or more beads. After the loading process, 
about 55% of the beads were without bacteria, and around 
0.6% of the bacteria remained without any beads.

cDNA enrichment
After cDNA purification, a qPCR reaction was performed 
to determine the cycle numbers required for cDNA 
enrichment. The cycle numbers at which the qPCR reac-
tion reached the early exponential amplification phase 
were identified as the cycle numbers for cDNA enrich-
ment. Subsequently, PCR amplification was carried out 
using specific primer sets (Table S1). The resulting PCR 
products were purified again using Ampure XP beads, 
and the purified cDNAs were quantified using Qubit.

Library preparation
For library preparation, we used the VAHTS Universal 
DNA Library Prep Kit for Illumina V3 (ND607-03/04 
Vazyme). The amplified and purified cDNAs were quan-
tified using a Qubit2.0 and analyzed using the Qsep100™ 
DNA Fragment Analyzer. End-repair and adenylation 
were performed on the qualified cDNAs using a reaction 
mixture containing 50 ng fragmented DNA, end-repair 
enzymes, end-repair buffer, and nuclease-free water. 
The reaction mixture was incubated at 30°C for 30 min 
and then inactivated at 65°C for 30 min. After adding 
the working adaptor and ligation enzymes, the mixture 
was incubated at 20°C for 15 min, and the ligated DNA 
was then purified and selected using AMPure XP beads. 
The library was then amplified by PCR and purified again 
using AMPure XP beads. Finally, the qualified cDNA 
library was quantified using a Qubit2.0 and analyzed 
using the Qsep100™ DNA Fragment Analyzer, before 

being sequenced using the NovaSeq 6000 and S4 Reagent 
Kit with paired-end reads of 150.

Library generation and analysis for metagenome 
sequencing
DNA was extracted from frozen fecal samples using 
a TIANamp Micro DNA kit (DP316, Tiangen Biotech) 
according to the manufacturer’s recommendations. 
Agilent 4200 TapeStation (Agilent Technologies) was 
used to assess DNA quality. DNA libraries were carried 
out by a standardized procedure for DNA fragmen-
tation, end repair, adapter ligation, and PCR amplifi-
cation. Agilent Bioanalyzer 2100 was used to assess 
library quality. Whole-genome shotgun sequencing of 
fecal samples was performed on an Illumina Hiseq2500 
platform. All samples were paired-end sequenced with 
a 150-bp read length to a targeted data size of 5.0 Gb. 
Metagenome data process: Sequence reads were passed 
through the KneadData QC pipeline, which incorporates 
the Trimmomatic and BMTagger filtering and decontam-
ination algorithms to remove low-quality read bases and 
reads of human origin, respectively: (i) trim non-human 
reads shorter than 50 nucleotides; (ii) exclude samples 
with < 500,000 microbial reads. Taxonomic profiling was 
performed using the MetaPhlAn2 classifier. The classifier 
relied on approximately 1 million clade-specific marker 
genes derived from > 10,000 microbial genomes to unam-
biguously classify reads to taxonomies and yield the rel-
ative abundances of the taxa identified in the sample.

Single microbe analysis pipeline for microbial 
community
Single microbe annotation algorithm (MIC-Anno): We 
first determined the cut-off values by the analysis of bar-
code and gene count scatter plots. We identified a point 
of inflection in the scatter plot that helped us select 
cells for further analysis. The portion of genes associ-
ated with cells located beyond this inflection point was 
automatically filtered out. In this method, we adopted a 
K-mer-based root to leaf taxonomic classification strat-
egy. We first applied Kraken2 (Lu et al., 2022), a K-mer-
based reads classification method, on every read in each 
barcode based on UHGG (v2.0.1) (Almeida et al., 2021) 
gut microbiome genome database. After all the reads 
were assigned to each node of different taxonomic lev-
els (i.e., order, family, genus, and species), we calculated 
the sum of reads in each node from the leaf to the root. 
Then we performed the taxonomic classification from 
the root to leaf taxonomic levels. At the root taxonomic 
level, we ranked all the nodes from the highest to lowest 
based on the read number of the nodes and selected the 
node with most read number as a potential annotation 
candidate. Based on the annotation result, then we per-
formed the same annotation process in the next lower 
taxonomic level, until the leaf nodes (species level). To 
evaluate the significance of the results, we also calculate 
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the P-value for the prediction results of each node. We 
tested the MIC-Anno method in the mock community, 
and the results showed that it could precisely annotate 
each barcode.

Single microbe bacteria analysis pipeline (MIC-Bac): 
In the single microbe sequencing dataset, we identified 
hundreds of bacteria species in each microbiome sample, 
and some species could only detect few barcodes. So to 
further investigate the functional heterogeneity in spe-
cies, we only keep the abundant bacteria species (> 3% 
total barcodes) for the downstream analysis. And it will 
be optional for the users to include all the genera in the 
analysis. First, we trimmed primer sequences and extra 
bases generated by the dA-tailing step in raw pair-end 
sequencing data. Then 8 bp UMI and 20 bp  cell-specific 
barcode were extracted from R1 end sequencing file and 
merged as the same accepted barcode with a Hamming 
distance of 2 bp or less. And R2 end file was used to 
generate the bacterial gene expression matrix by STAR 
(v2.7.10a) (Dobin et al., 2013), featureCounts (v2.0.3) 
(Liao et al., 2014) and umi_tools (v1.1.2) (Smith et al., 
2017) with reasonable parameters and whole UHGG 
(v2.0.1) (Almeida et al., 2021) gut microbiome genome 
as the reference. The high-quality and unique mapped 
reads were preserved to count UMIs for each barcode. 
Given that excess taxonomic types may produce noise to 
downstream analysis, we preserved a rational amount of 
major genera for the sample based on the species anno-
tation result of MIC-Anno. Then we utilized dimensional 
reduction of single-cell expression vectors, followed by 
graph-based clustering and analysis of differentially 
expressed genes using the Seurat (v4) (Hao et al., 2021) 
package and a two-sided Wilcoxon rank-sum test with 
Bonferroni correction to identify unique cellular tran-
scriptional differences (Kopylova et al., 2012). To detect 
the SNPs in each subpopulation, we first combined all 
the sequencing reads of each barcode in one subpopu-
lation, and then used the software Bowtie2 to map the 
reads to the reference genome of the corresponding 
bacteria species, and used the software GATK to call the 
SNPs in each subpopulation.

Single microbe phage analysis pipeline (MIC-Phage): 
To contrast a transcriptional correlated matrix of phage 
and bacteria, we first built a phage-related gtf file for 
GPD genome sequences, which was a part of the input 
of STAR (v2.7.10a) (Dobin et al., 2013). Second, we fil-
tered out the vast majority of rRNA and tRNA reads 
by SortMeRNA (Kopylova et al., 2012) for the quality- 
controlled data. Then we used STAR to align reads and 
the unique map reads were counted by featureCounts 
(v2.0.3) (Liao et al., 2014). Finally, we utilized umi_tools 
(v1.1.2) (Smith et al., 2017) to count UMIs and build the 
matrix. We used Seurat with reasonable parameters 
and removed the barcode with taxonomic information 
which bacteria belonging to this genus fewer than 3% 

in this sample further clustering and running dimen-
sional reduction for visualization. Genus-related phages 
were identified following the steps of Seurat FindMarkers 
function and the logFC.threshold was set 0.1. For the top 
20 phages of each genus we used blastn to compare the 
reference viral genome to UHGG (v2.0.1) genus reference 
genome. The solid prediction of host-phage correlation 
must have at least 3 kb alignment length and above 80% 
idents of both genomes.
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