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Pan-Cancer Single-Nucleus Total RNA Sequencing Using
snHH-Seq
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Tumor heterogeneity and its drivers impair tumor progression and cancer
therapy. Single-cell RNA sequencing is used to investigate the heterogeneity
of tumor ecosystems. However, most methods of scRNA-seq amplify the
termini of polyadenylated transcripts, making it challenging to perform total
RNA analysis and somatic mutation analysis.Therefore, a high-throughput
and high-sensitivity method called snHH-seq is developed, which combines
random primers and a preindex strategy in the droplet microfluidic platform.
This innovative method allows for the detection of total RNA in single nuclei
from clinically frozen samples. A robust pipeline to facilitate the analysis of
full-length RNA-seq data is also established. snHH-seq is applied to more
than 730 000 single nuclei from 32 patients with various tumor types. The
pan-cancer study enables it to comprehensively profile data on the tumor
transcriptome, including expression levels, mutations, splicing patterns, clone
dynamics, etc. New malignant cell subclusters and exploring their specific
function across cancers are identified. Furthermore, the malignant status of
epithelial cells is investigated among different cancer types with respect to
mutation and splicing patterns. The ability to detect full-length RNA at the
single-nucleus level provides a powerful tool for studying complex biological
systems and has broad implications for understanding tumor pathology.

H. Chen, J. Shao, Y. Mei, L. Ma, P. Zhang, Y. Liao, X. Wang, L. Yang, Y. Fu,
J. Wang, X. Han, Y. Wang, G. Guo
Bone Marrow Transplantation Center of the First Affiliated Hospital
and Center for Stem Cell and Regenerative Medicine
Zhejiang University School of Medicine
Hangzhou 310058, China
E-mail: xhan@zju.edu.cn; yongcheng@zju.edu.cn; ggj@zju.edu.cn

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202304755

© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202304755

1. Introduction

The heterogeneity of cancer cells and their
drivers play an important role in tumorige-
nesis and malignant progression and have
significant impacts on cancer treatment.[1]

Single-cell RNA sequencing (scRNA-seq)
enables the measurement of transcriptional
information at the single-cell level to ac-
curately resolve tumor heterogeneity. Many
studies have used scRNA-seq to illustrate
the diverse tumor microenvironment,[2–5]

reveal the mechanism of therapeutic strate-
gies and accordingly propose new molecu-
lar markers and therapeutic targets.[6,7]

However, scRNA-seq has unique logisti-
cal and technical challenges in the process-
ing of clinical tumor samples, especially
archival materials (e.g., frozen tissues).[8]

First, scRNA-seq of clinical tumor sam-
ples requires the implementation of a
rapid tissue dissociation program that cur-
rently does not exist in the routine pathol-
ogy laboratories of most hospitals. Second,
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the majority of scRNA-seq methods use oligo-dT primers to
capture and amplify polyadenylated transcripts, and this process
is highly dependent on the quality of tissue samples. In addition,
the oligo-dT capture results in the absence of non-polyadenylated
transcripts that are important for many biological processes.[9]

Third, high-throughput scRNA-seq methods detect only short
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fragments of the 3′ or 5′ end of the transcript, which limits the
mutation and splicing analysis of clinical samples, especially for
tumors.

To overcome these challenges, we developed “high-throughput
and high-sensitivity single-nucleus total RNA sequencing”
(snHH-seq), which combines random primers[10,11] and a
preindex strategy[12] in the droplet microfluidic platform. Single-
nucleus RNA-seq (snRNA-seq) reduces the requirement for
sample collection and processing.[13,14] It also paves the way for
the analysis of longitudinal samples. Transcript capture using
random primers instead of oligo-dT primers not only rescues
archival clinical samples with partially degraded transcripts
but also obtains higher sensitivity (one transcript has several
sites for capture) and higher coverage (both 3′ and 5′ ends
of the transcripts, both non-polyadenylated and polyadeny-
lated transcripts).[15] The preindex strategy is applied in both
droplet-based[16] and plate-based[12] methods that offer at least
one order-of-magnitude gain in throughput and facilitate the
multiplexed analysis of clinical samples.

Taking into account the characteristics of the data generated
by snHH-seq, an innovative analysis platform has been estab-
lished to specifically encompass the entire process from up-
stream to downstream. This platform tackles key challenges,
including quality control of sequencing reads, analysis of full-
length transcripts, and expanding the utilization of total RNA
for comprehensive studies. snHH-seq platform was applied to
tumor samples from 32 patients, comprising >700 000 nu-
clei from various cancer types, including liver, lung, intestine,
brain, stomach, esophageal, and breast cancer. This pan-cancer
level sample collection allowed us to conduct a comprehensive
analysis, potentially uncovering unique characteristics for each
tumor type as well as commonalities shared among different
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types of cancer. The functions of key cell types and regulatory
genes in tumorigenesis and malignant progression were ana-
lyzed, including the identification of a pan-cancer malignant
ciliated-like cell cluster and several transcriptional characteris-
tics of cell proliferation specific to malignant cells. Combin-
ing transcriptional information with splicing and mutational
information, we detected variants in small nuclear RNAs and
their potential splicing effects on cancer markers related to
the mechanism of tumorigenesis. Based on the somatic vari-
ants and CNV patterns, we also constructed a clonal evolution
model for one COAD sample and analyzed malignant progres-
sion.

In conclusion, snHH-seq and its accompanying analysis plat-
form provide a valuable framework for advancing transcriptomic
research and analysis, particularly in the context of clinical sam-
ples and complex biological processes. This pan-cancer study
enables comprehensive profiling of the transcriptome, covering
expression, mutation, splicing, and clone dynamics. A robust
pipeline has been established to facilitate the analysis of full-
length RNA-seq data, and a comprehensive pan-cancer database
has been constructed. This study serves as a foundation for un-
derstanding the molecular underpinnings of major cancers asso-
ciated with high morbidity and mortality in China. Overall, these
advancements have significantly advanced our understanding of
cancer biology and hold immense potential for improving cancer
diagnosis, prognosis, and treatment outcomes.

2. Results

2.1. snHH-Seq: A High-Throughput and High-Sensitivity
Platform for Single-Nucleus Total RNA Sequencing

To enable the assessment of massive numbers of clinically
frozen samples and reduce the batch of dissociation,[13,14] we
established snHH-seq, a droplet-based[17] single-nucleus total
RNA sequencing platform with high throughput and high
sensitivity (Figure 1a; Figure S1a, Supporting Information).
First, tissue was dissociated using liquid nitrogen or scissors,
and nuclei were isolated. Then, nuclei were fixed using PFA
and barcoded (1st round) in reverse transcription (RT) reactions
using well-specific RT primers. The RT preindex strategy can
increase the throughput of single-cell RNA-seq and profile mas-
sively multiplexed samples in a single experiment.[12,16] Random
RT primers were used to capture both polyadenylated and non-
polyadenylated transcripts. Moreover, a single transcript was
barcoded by several RT primers that increased the sensitivity,
and the unique fragment identifier (UFI) was used to quantify
the molecules with strand specificity.[18] After RT barcoding,
nuclei were collected and mixed to add poly(A) tails at the 3′ end
of the cDNAs using terminal transferase (TdT). Then, we used
the conventional microfluidic platform to produce droplets.[17]

After preindexing, we overloaded nuclei in the microfluidic
chip to increase the throughput (Figure 1b). The collision rate
after overloading was controlled by increasing the preindex
combination (Figure 1c; Figure S1b, Supporting Information).
The preindex strategy promotes parallel analysis of clinical
samples. In the droplet, the barcoded oligo-dT bound with the
poly(A) tail of cDNA, and a second barcode was added to cDNA

after extending. Finally, we broke the droplets and amplified the
cDNA fragments for next-generation sequencing (NGS).

To assess the fidelity of snHH-seq, we performed a species-
mixing experiment with cultured human (293T) and mouse (3T3)
cells. The size of the cDNA was 200–500 bp (Figure S1c, Sup-
porting Information) and was suitable for NGS without frag-
menting. After data processing, we obtained 2290 nuclei (293T:
nuclei 1122, median gene 4729; 3T3: nuclei 1150, median gene
3605) and showed that snHH-seq produced high-fidelity single-
cell libraries with no more than 0.8% cell doublets (Figure 1d,e;
Figure S1d, Supporting Information). Unlike poly(A)-based 10X
Chromium, snHH-seq exhibited homogeneous coverage across
the gene body, similar to VASA-seq[18] (Figure 1f), and made it
possible to discover and trace mutations in clinical samples at the
single-cell level. Cryopreserved samples are more convenient for
longitudinal and multiplex analysis. We used snHH-seq with and
without the preindex strategy to analyze fresh and frozen mouse
brains. The different batches merged well in both UFI/Gene dis-
tribution and cell clustering (Figure S1e–h, Supporting Informa-
tion). The cryopreservation process and preindex process did not
significantly alter gene expression and facilitated the analysis of
clinically multiplexed samples. In the mouse brain, we obtained
10 546 cells (median UFI 13 094, median gene 3468) and identi-
fied 19 cell clusters, including various neurons (Rgs9, Synpo2,
etc.), astrocytes (cluster 8/13: Glis3, Slc1a3, etc.), oligodendro-
cytes (cluster 9: Plp1, Bcas1, Pdgfra, etc.), microglial cells (cluster
17: Inpp5d, Dock2, etc.), and endothelial cells (cluster 16: Rgs5,
Flt1, etc.) (Figure S1i,j, Supporting Information). Compared with
a brain sample of 10X Chromium, we detected more genes of
different types (Figure S1k, Supporting Information), including
lincRNA genes, snRNA genes, processed pseudogenes, protein-
coding genes, etc.

We then evaluated snHH-seq on tumor samples. First, we as-
sessed different buffers for nucleus isolation in tumor samples,
including 0.1% IGEPAL CA-630,[19] 0.1% NP40, and Tween with
salts and Tris (TST).[14] As previously reported, TST showed the
highest expression of mitochondrial genes (Figure S2a, Support-
ing Information). Overall, the three nucleus isolation buffers had
comparable performances in terms of UFI/Gene distribution,
cell clustering, and cell type diversity (Figure S2a–d, Supporting
Information). Second, we assessed the quality of barcoded nuclei
after cryopreservation. Both fresh and frozen barcoded nuclei had
comparable performances in terms of UFI/Gene distribution,
cell clustering, and cell type diversity (Figure S2e–g, Supporting
Information). Third, we checked the read distribution of snHH-
seq. Using nuclei for RNA-seq, snHH-seq effectively depleted
the cytoplasmic rRNAs without an extra rRNA removal step
(Figure S2h, Supporting Information). snHH-seq effectively
detected nascent RNA with a high percentage of intron reads
(Figure S2i, Supporting Information).[10] Fourth, we compared
the snHH-seq data to the Microwell-seq data. We recovered
similar main cell groups in the two methods (Figure S3a,b,
Supporting Information) but at different proportions. As pre-
viously described, more parenchymal and structural cells were
obtained in nuclei dissociation, and more immune cells were
captured in cell digestion.[14] The stress signature of dissociation
was greater in cells (Microwell-seq) than in nuclei (snHH-seq)
(Figure S3c, Supporting Information). Nuclei profiles had higher
levels of long transcripts and transcripts with long poly-A tails
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Figure 1. Workflow and evaluation of snHH-Seq. a) A schematic of the basic workflow for snHH-seq. b) Nuclei overloading boosts the percentage of
droplets filled with nuclei. Nucleus concentration: ≈1000 000 nuclei mL−1, 4000 000 nuclei mL−1, 8000 000 nuclei mL−1. c) Expected collision rate as
a function of the nuclei loading concentration for snHH-seq with different numbers of round1 barcodes. b,c) The line delineates the mean value, and
the shading indicates the 95% confidence interval (CI). d) Scatter plot of human-mouse mix test using snHH-seq (48 preindex barcodes, load with
≈1000 000 nuclei mL−1, 50 μL droplet). Blue dots indicate human-specific cells; red dots indicate mouse-specific cells. Only 0.79% (purple dots) are
human-mouse mixed cells. e) Saturation analysis of snHH-seq, 10X Chromium V3 and VASA-drop. The number of genes detected per nucleus when
downsampling total read counts to the indicated depths. f) Read coverage along the gene body for snHH-seq, 10X Chromium V3, and VASA-drop.

(Figure S3d–f, Supporting Information), consistent with previ-
ous reports.[13] snHH-seq detected a higher fraction of protein-
coding transcripts, transcription factors (TFs), lncRNAs, non-
polyadenylated genes,[9] and sncRNAs (Figure S3g, Supporting
Information). Based on the characteristics of the data generated

by snHH-seq, we also constructed an analysis process to analyze
the tumor samples (Figure S3h, Supporting Information).

Overall, snHH-seq is a powerful approach that combines the
advantages of random RT primers and preindex strategy. With
high throughput and high sensitivity, snHH-seq promotes new
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possibilities for mapping tumor atlases and other genomic stud-
ies.

2.2. Mapping the Pan-Cancer Landscape at Single-Nucleus
Resolution

Next, we profiled frozen clinical tumor samples using snHH-
seq. We analyzed 735 722 nuclei from 32 patients span-
ning tumor types with the highest morbidity and mortality in
China, including lung adenocarcinoma (LUAD), hepatocellu-
lar carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC),
glioma, colon adenocarcinoma (COAD), rectum adenocarcinoma
(READ), breast invasive carcinoma (BRCA), esophageal carci-
noma (ESCA), and stomach adenocarcinoma (STAD) (Figure 2a;
Figure S4a and Table S1, Supporting Information). In single-cell
cancer studies, identifying malignant cells is a crucial step, as
they make up the major component of cancer samples. To iden-
tify the cell types (malignant cells and nonmalignant cells) in our
dataset, we utilized a combination of marker genes and inferred
copy number variation (CNV) (https://bis.zju.edu.cn/PCL/ and
Table S2, Supporting Information). Taking into account the types
of cancer being studied, we used annotated nonepithelial cells,
such as endothelial cells, stromal cells, and macrophages, as
references for inferCNV to infer the CNV features for each
patient.

The complete nuclei dataset was grouped into 43 major clus-
ters (Figure 2b–d; Figure S4b–d, Supporting Information). Each
cell cluster was annotated according to the expression of cell type-
specific markers. The 43 cell clusters were divided into six major
cell types, namely, epithelial cells (CDH1, PATJ), endothelial cells
(CDH5, FLT1, VWF), stromal cells (COL1A1, COL1A2, ACTA2,
MYH11), immune cells (PTPRC/CD45, SPI1, CSF2RA/CD116),
neurons (SRRM4, FRMPD4), and glial cells (GFAP, PTPRZ1,
PLP1). Our analysis revealed that most of the epithelial clus-
ters were patient-specific, while some epithelial clusters were
tumor-specific with multipatient contributions (C4, C7, C16,
C17, C26, C27, C28, C36, and C38). Notably, only C0 and C9
were epithelial cells with multitumor contributions. C0 highly
expressed the genes of microvillus organization and embryonic
morphogenesis (Figure S4e, Supporting Information). C9 was
the epithelium of the digestive tract (esophagus, stomach, and
intestine) enriched in gene functions of digestion and cell popu-
lation proliferation. We also observed that the tumor microen-
vironment (TME)-related endothelial cells, stromal cells, and
immune cells of different patients were well merged respectively
(Figure 2c; Figure S4c, Supporting Information). C5 was the stro-
mal cell with multi-tumor contributions. Other stromal clusters
(C24, C35, C39) were tumor-specific: C24 cells were from breast
cancer and expressed smooth muscle markers; C35 cells were
ICC_P2 specific with both epithelial and stromal features, which
may be related to epithelial to mesenchymal transition (EMT);
C39 cells were brain stromal cells of glioma with multipatient
contributions. The immune clusters with multitumor contribu-
tions corresponded to macrophages (C3, MSR1) and T cells (C21,
CD247, and TRAC), while C31 cells were microglia of glioma
with multipatient contributions, and C41 cells were Kupffer cells
of ICC with multipatient contributions. This finding suggests
distinct characteristics of the TME in different patients and tu-

mors (Figure S4b, Supporting Information) and highlights the
importance of considering patient-specific and tumor-specific
features in cancer research.

To further illustrate the heterogeneity of the TME (tumor mi-
croenvironment), we pooled endothelial cells, myeloid cells, and
stromal cells from different patients and performed subcluster-
ing analyses (Figure 2e; Figure S5, Supporting Information). We
obtained 15 subclusters of tumor endothelial cell (TEC), includ-
ing arterial TEC (C4, FBLN5, and SULF1), venous TEC (C6,
ACKR1), lymphatic TEC (C2, PROX1), capillary TEC (C7, BTNL9,
and CD36), peri-TEC (C9, PDGFRB), tip TEC (C3, COL4A1), cell
cycle TEC (C12, C2orf48, and CIT), and immune-like TEC (C10,
DOCK2, and PTPRC) (Figure 2f; Figure S5a, Supporting Infor-
mation). Tip TEC (C3) and cell cycle TEC (C12) were enriched in
multiple tumors. In contrast, capillary TEC (C7) mainly resided
in normal tissue adjacent to the tumor (NAT).[2] In pan-cancer
myeloid cells, we observed shared and specific gene signatures
between the tumor and NAT. For example, we obtained M1-like
macrophages (C6/C7) with the expression of IL1B,[2] PDE4B,[20]

MDM2, and PELI1[21] in the lung NAT (Figure S5b–e, Supporting
Information). In contrast, TAM (tumor-associated macrophage)
C16 was enriched in lung tumors and highly expressed PDE4B
but not IL1B, MDM2, or PELI1. Both C1 and C14 had similar
expression profiles and expressed PPARG, the resident alveolar
macrophage marker.[2,22] However, notably, C14 was from lung
tumor with low expression of FN1, whereas C1 was from lung
NAT and highly expressed FN1 (M2 marker).[23] Additionally, sev-
eral negative regulators were involved in inflammation inhibi-
tion in the tumor microenvironment. For example, we detected
high expression of RORA,[24] a negative regulator of inflamma-
tion, in TAM C0 (PTPRF), C10 (PTPRN2), C18 (C2orf48), C20
(WWC1), and C21 (MAGl1), all of which were enriched in tu-
mors; TAM C2 expressed GPNMB,[25] a negative regulator of
inflammation, and mainly resided in tumors. Furthermore, the
cell cycle TAM (C13/18) expressed EZH2, C2orf48, and CIT and
mainly resided in tumors. TAM C3 and C17 mainly resided in tu-
mors and coexpressed CD163, MERTK, and LYVE1, which indi-
cated the phagocytosis phenotype.[3] In pan-cancer stromal cells,
we obtained 18 subclusters of stromal cells (Figure S5f–i, Sup-
porting Information). Among them, C3 and C6 were myofibrob-
lasts with the expression of DMD. C3 was from the breast tu-
mor with the expression of ENO1 (stress response associated
gene), whereas C6 was from both tumor and NAT samples of
a variety of tumors. The two matrix CAF (cancer associated fi-
broblast) subclusters, C4, and C7, exhibited high expression of
COL1A1. C7 was enriched in tumors with high expression of
COL3A1,[26] which may promote tumor metastasis. Another ma-
trix CAF subcluster, C11, was linked to angiogenesis and highly
expressed NOTCH3 (an important receptor in vascularization
and angiogenesis), COL18A1 (involved in angiogenesis regula-
tion), COL4A1, and COL4A2,[27] which might promote the pro-
liferation and metastasis of tumor. Furthermore, we observed sig-
nificant heterogeneity in breast tumor and NAT samples. C2 and
C5 mainly resided in breast tumors and expressed tumor sup-
pressor genes (EXT1[28] and HPSE2[29]), which may regulate the
heparan sulfate in the breast TME; C13 mainly resided in breast
NAT and highly expressed LRP1B,[30] a putative tumor suppres-
sor that may inhibit cancer migration and invasion. The TNXB[31]

expressing C8 mainly resided in NAT with multi-tumor contri-

Adv. Sci. 2023, 2304755 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304755 (5 of 19)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202304755 by C

ochraneC
hina, W

iley O
nline L

ibrary on [27/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Adv. Sci. 2023, 2304755 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304755 (6 of 19)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202304755 by C

ochraneC
hina, W

iley O
nline L

ibrary on [27/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

butions and might impede the invasion and metastasis of tumor
cells. Overall, our pan-cancer analysis of the cell compartment
revealed shared and cancer-restricted features of the tumor envi-
ronment.

2.3. Identification of Pan-Cancer Malignant Cell Subclusters

To investigate the malignant status of epithelial cells among dif-
ferent cancer samples, we first employed CNV analysis to dis-
tinguish malignant cells from non-malignant cells. We merged
the inferCNV results from different patients with the same tu-
mor type and performed hierarchical clustering to identify ma-
lignant cells in each tissue. Our findings revealed that malig-
nant cells tended to form patient-specific clusters with relatively
high CNV scores (Figure S6a,b, Supporting Information), con-
sistent with the known mechanism of tumor-related copy num-
ber variation. In contrast, nonmalignant cells were successfully
discerned, as they tended to form a distinct cluster character-
ized by relatively low CNV scores, along with the inclusion of
multiple patients (Figure S6a, Supporting Information). These
findings suggest that nonmalignant cells exhibited less notice-
able and significant CNV patterns compared to malignant cells
and were thus grouped. We speculated that this difference in
CNV patterns between nonmalignant and malignant cells may
be due to the underlying genetic mechanisms involved in tumori-
genesis. For each tissue, we observed up-regulated and down-
regulated genes in malignant cells (Figure S6c–e, Supporting In-
formation), which may serve as potential biomarkers or thera-
peutic targets for cancer treatment. For example, we observed
up-regulated TCF7L1 and down-regulated DLG5 in BRCA[32,33]

and up-regulated DACH1 and down-regulated SEMA6A in
COAD_READ.[34,35] Additionally, up-regulated lncRNA NEAT1 in
BRCA[36] and down-regulated lncRNA RP11-681B3.4 in ESCA,
which have not been previously reported, were identified. These
results suggest that each type of cancer gained specific expression
alterations during tumor progression.

Previous studies have explored gene regulatory modules of
malignant cells at a pan-cancer level by applying NMF on each
sample and measuring the similarities between each sample’s
NMF modules,[37,38] and several studies have focused on subtyp-
ing malignant cells within specific cancer types by integrating
and clustering of malignant cell from several patients.[39] How-
ever, to date, no studies have examined the commonalities across
different cancer types by subtyping malignant cells at a pan-
cancer level. In this study, we addressed this gap by integrating
over 300 000 malignant cells derived from seven epithelial-origin
cancers. To eliminate the influence of tissues and cancer types,
tissue-specific genes were removed from the expression matrix,
and cancer types were designated as batch labels for Harmony.[40]

Eleven subclusters of pan-cancer malignant cells were identified
with distinct gene expression profiles (Figure 3a,b). Each cluster
was characterized by a specific set of marker genes, which were
indicative of the biological processes and pathways active within

these cells. C0 exhibited characteristics associated with lympho-
cyte activation, while C1 displayed gene expression related to both
mitochondria and the cell cycle. C2, C3, and C5 were character-
ized by the upregulation of CCND1 (oncogene), PLPPR1, and
DOCK10, respectively. C7 may be associated with the RHO GT-
Pase cycle, and C8 showed upregulation of synaptic genes. C9
may be related to protein ubiquitination. Cells within C4 exhib-
ited a high proportion of mitochondrial transcripts, which may
reflect the stress or high energy demand of malignant cells.[41] C6
represented a group of proliferating malignant cells commonly
observed in tumors. Interestingly, C10 highly expressed cilia-
related genes, which have not been previously discovered. Previ-
ous analyses of tumor transcription modules have also revealed
that, distinct from other transcription modules, cells expressing
proliferating and ciliated-like transcription modules form sep-
arate subclusters.[38] Therefore, additional analyses were con-
ducted on C6 and C10.

To capture the intricate transcriptional patterns associated
with malignant cell proliferation, we proceeded to conduct fur-
ther analysis on C6. Compared to proliferating cells from non-
malignant epithelia across different tissues, proliferating ma-
lignant cells (C6) exhibited evident CNV features, which was
consistent with our previous identification of malignant cells
(Figure 3c). Furthermore, we inferred the cell cycle stages of pro-
liferating malignant cells and non-malignant proliferating cells,
assigning them to the G1, S, and G2M phases (Figure 3d). Subse-
quently, we conducted differential expression analysis and iden-
tified a set of coding and noncoding genes that exhibited up-
regulation or downregulation during different cell cycle stages
of malignant cells in each tissue (Figure 3e,f; Figure S7a, Sup-
porting Information). These differentially expressed genes may
indicate disruptions in cell cycle control in cancer and pro-
vide new markers for cell cycle blockade specific to the cancer
cells.

Furthermore, to investigate the cilia-related signatures across
different cancer types, we conducted additional analysis on C10.
Despite differences in CNV patterns between C10 malignant
cells and lung-ciliated cells (Figure 3g), C10 malignant cells
exhibited high expression of motile cilia-related genes, including
DNAH7 and CFAP54 in BRCA, LUAD, COAD_READ and
ESCA; CFAP47 and HYDIN in HCC; DNAH6 and DNAH7 in
ICC; CFAP54 and DNAH6 in STAD, similar to those found in
lung ciliated cells (Figure 3h,i). Additionally, Figure S7b (Sup-
porting Information) shows the expression proportions and exon
proportions of selected cilia-related genes in non-malignant lung
ciliated cells and ciliated-like malignant cells, demonstrating
consistency and excluding interference from exon proportions.
Notably, our results were further confirmed by protein-level
expression of these cilia-related genes in various types of cancer
samples from public databases (The Human Protein Atlas—a
tool for pathology) (Figure S7c, Supporting Information). We also
observed expression differences between these ciliated-like ma-
lignant cells and nonmalignant lung ciliated cells. For instance,
DNAH14, a gene belonging to the DNAH gene family, was

Figure 2. Pan-cancer analysis using snHH-seq. a) Schematic indicating tumors collected in this study. b,c) Uniform manifold approximation and projec-
tion (UMAP) embedding of cells from the 32 tumors analyzed in this study. Color-coded for patient b) and cell type c) (up: cell cluster, down: cell type).
d) Expression in each cell cluster (columns) of marker genes (rows). e) UMAP of pan-cancer endothelial cells. f) Marker gene expression per tumor
endothelial cell (TEC) cluster. The right bar plot shows the tumor distribution in each TEC cluster. Color-coded for tumor.
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up-regulated in ciliated-like malignant cells, whereas nonmalig-
nant lung ciliated cells exhibited higher expression of another
DNAH family gene, DNAH10 (Figure S7d, Supporting Infor-
mation). The absence of DNAH10 expression may affect motile
cilia assembly, as DNAH10 knockout mice display abnormal
sperm flagella structures resembling asthenozoospermia-like
symptoms.[42] Additionally, the transcription factor RFX3,
associated with lung ciliated cells, was expressed at low lev-
els in ciliated-like malignant cells (Figure S7c,e, Supporting
Information).[43] Mutation profiles of ciliated-like malignant
cells and nonmalignant epithelial cells suggest that these expres-
sion differences may not be attributed to mutations (Figure S7f,
Supporting Information). These results suggest that functional
motile cilia may be absent in these malignant ciliated-like cells.
And further research is required to ascertain the presence of cilia
structures in these ciliated-like malignant cells and to explore
their specific functions and origins.

2.4. Somatic Mutations and Their Effects on Splice Events

Understanding the genetic alterations and molecular processes
underlying cancer development is crucial for identifying poten-
tial therapeutic targets. We performed a comprehensive analysis
of transcription mutations and their potential relationship with
splicing effects resulting from malignancy among different
tumor patients. Nonsynonymous mutations and synonymous
mutations were both included as it was previously reported that
synonymous mutations might play a role in driving human can-
cer counts.[44] The number of mutation loci per gene (count per
gene) per sample provides information about the diversity and
distribution of mutations within a gene. The depth of mutations
per gene (depth per gene) per sample represents alternative allele
count for a specific gene. We calculated these metrics by per pa-
tient level or per cluster level to get confidence in the detected mu-
tations and conducted a Wilcoxon test on three groups: malignant
group, stromal group, and nonmalignant epithelial group. Mu-
tated genes that exhibited statistical significance with a log-fold
change greater than 20 were selected, and common significant
mutated genes of cancer cells by four approaches were detected
(Figure 4a,b; Figure S8a,b, Supporting Information). The corre-
lation of mutation among different cancer types was observed.

Mutations in mitochondrial genes were detected in both ma-
lignant and nonmalignant epithelial cells. In cancer cells, these
mutations can induce functional alterations in mitochondria, in-
cluding impaired oxidative phosphorylation and disrupted en-
ergy metabolism. Additionally, we observed mutations in genes
related to the Wnt pathway, including STK3, UBR5, and BICC1,
suggesting their potential role in cancer progression. Mutations
in ITGB1, TFRC, XPO1, PICALM, PKP4, and MSI2, which are
associated with Rho GTPases, were identified. These mutations

indicate alterations in cytoskeletal dynamics and cell morphology,
affecting crucial cellular processes such as adhesion, migration,
and shape changes. Notably, specific mutations were observed
in genes involved in lipid localization and transport, including
AKR1C1, HDLBP, and ABCC3, suggesting disruptions in lipid
metabolism that facilitate the rapid proliferation of cancer cells.

In the stromal group, mutations were found in genes related
to the extracellular matrix (ECM). ECM proteoglycans are vital for
maintaining tissue and organ integrity, and mutations in ECM-
related genes, such as COL1A2, COL3A1, COL4A1, COL5A1,
COL6A3, and LAMA4, can lead to altered ECM composition
and organization. Researchers also found prognostic value of ex-
tracellular matrix gene mutations in cancers.[45] These changes
might facilitate the generation of a permissive microenviron-
ment for tumor cells by affecting critical processes such as cell
adhesion, migration, and ECM interactions through the PID IN-
TEGRIN1 pathway.[46]

By randomly sampling 1000 cells from different patients, a
mutation count matrix was extracted and PCA components were
calculated and used to do correlations (Figure S8c, Supporting
Information). To examine the cancer-type-specific mutations, we
analyzed the variation signature of different cancer types com-
pared with normal groups (Figure 4c). Mutations still appeared
to be relatively tumor-type-specific. We identified some muta-
tion markers specific to tumor types, including some typical
tumor-related genes (e.g., TP63, ABCC1, ABCC5,[47] and TFDP1
in ESCA) as well as numerous noncoding genes (e.g., NPSR1-
AS1[48] and AC079466.1[49] in HCC) and pseudogenes (e.g., SD-
HAP3 and TPTEP1 in LUAD). Additionally, there were accu-
mulations of common mutations in mitochondrial genes (MT-
NDs, MT-ATP6[50]), small nuclear RNA (RNU4-1, RNU6-31P),
and tumor-related genes (NEAT1,[51] NR4A3[52]). This suggests
that a significant number of common mutations may have al-
ready accumulated in relatively non-malignant epithelial cells
during tumor development, leading to subsequent transcrip-
tional changes.

By analyzing specific variation types of these mutations, the
proportion of intronic mutations was particularly high as a
result of single-nucleus full-length sequencing, over 90% of
total variations (Figure S8d,e, Supporting Information). The
well-known cancer-related pathways showed very strong signals
(Figure S8f,g, Supporting Information). We found extensive mu-
tations in some splicing-related genes, such as RNU1-1, RNU-1-
88P, RN6-12P, and RN6-30P, with the same nucleotide changes
at the same loci in both malignant and epithelial cells (Figure 4d).
On the other hand, some nuclear small RNAs, such as RNU6-21P
and RNU6-31P, had more mutation counts in malignant cells
(Figure 4e). RNU genes encode small nuclear RNAs (snRNAs)
that are essential components of the spliceosome, the complex
responsible for accurate splicing of pre-mRNA. We hypothesized

Figure 3. Characteristics of pan-cancer malignant epithelial cell. a) UMAP of pan-cancer malignant epithelial cells. b) Marker gene expression and cancer
type proportions for each malignant cell subcluster. c) Inferred CNV profiles of proliferating cells. Chromosomal amplification (red) and deletion (blue)
are inferred in each chromosomal position (columns) across the single cells (rows). Top: reference cells not expected to contain CNV in tumors. Bottom:
proliferating malignant and non-malignant epithelial cells. Color bar: cell type signature for each cell. d) The expression of cell cycle marker genes in
proliferating malignant and non-malignant epithelial cells. e,f) Expression of selected lncRNA e) and protein-coding f) genes in proliferating malignant
and non-malignant epithelial cells. g) Inferred CNV profiles of cilia-related cells. Chromosomal amplification (red) and deletion (blue) are inferred in
each chromosomal position (columns) across the single cells (rows). Top: reference cells not expected to contain CNV in tumors. Bottom: malignant
ciliated-like cell and nonmalignant ciliated cell. Color bar: cell type signature for each cell. h,i) The expression of cilia-related genes in the malignant cell
and lung-ciliated cell with its corresponding GO.
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that these RNU gene mutations could reflect the cell transcrip-
tion and splicing process and result in novel splice junctions and
alter the splicing pattern of multiple genes, such as known cancer
markers.

Total RNA sequencing allows us to obtain more detailed infor-
mation about the expression proportions of different transcripts
for genes at the custom cluster level, while conventional 3′ or 5′

terminal sequencing typically provides gene-level expression in-
formation without distinguishing between individual transcript
isoforms. All known CSC(cancer stem cell) genes were selected,
and the expression of their transcripts based on the distribution
of reads was inferred. Using DICEseq for transcript inference al-
lows us to obtain more detailed information about the expression
proportions of different transcripts for genes at the custom clus-
ter level. After clustering based on inferred transcript expression
of known CSC genes, it was observed that there were significant
differences in transcript expression between malignant and non-
malignant cells (Figure 4f,g), and for each cancer type, CSC tran-
script expression showed distinction as well (Figure S9a,b, Sup-
porting Information). Additionally, upregulated CSC transcripts
were identified, such as the transcript of ETV4 (Figure 4h),[53]

SERPINE2, MALAT1,[54] and pre-mRNA of ANLN (Figure S9c,
Supporting Information).[55] Known snRNAs are closely related
to the splicing process, and specific isoforms have been reported
in many cancers.[56,57] Taken together, we believe that the mu-
tations in snRNAs may directly affect the splicing in malignant
cells and promote the expression of certain CSC gene marker iso-
forms.

Overall, we found lots of genetic mutations in cancer cells,
which impact various vital signaling pathways, cellular processes,
metabolic functions, and splicing patterns. The identification of
mutations in snRNAs and splicing isoforms emphasizes the crit-
ical role of splicing dysregulation in tumor development and pro-
gression. Cancer-related alterations in the noncoding component
of the spliceosome need to be further examined, and detailed
functional analysis is required to confirm the role of these iso-
forms, which will contribute to a more comprehensive under-
standing of cancer biology and aid in the development of targeted
therapeutic strategies.

2.5. Copy Number Variation and Somatic Mutational Events
Underlie Tumor Metastasis

Tumor metastasis is a complex process that plays a pivotal role in
cancer progression and is responsible for the majority of cancer-
related deaths. In this study, we conducted a clonal study on a
metastatic COAD sample to understand the patterns and dynam-
ics of metastatic. The sample was obtained from the right-sided
colon cancer of a patient. The pathological type is moderately dif-
ferentiated adenocarcinoma, with ≈50% of the tumor being mu-

cinous adenocarcinoma. The tumor has infiltrated beyond the
serosa and shows evidence of lymphovascular invasion and per-
ineural invasion. Additionally, metastatic adenocarcinoma is ob-
served in the submucosal layer extending to the serosal layer.
Among the pericolic lymph nodes examined, one out of twelve
shows positive involvement. Invasive or metastatic adenocarci-
noma was found in the omental tissue.

In order to examine the clonal characteristics of cancer
metastatic, we utilized population-based CNV methods called
Numbat to perform a clonal study on a metastatic COAD sample.
Signals from gene expression and SNPs of this COAD sample,
and population-derived haplotype information are integrated to
accurately infer allele-specific CNV to reconstruct their clonal re-
lationship. Expression-based methods for inferring CNV rely on
the assumption that amplifications or deletions in the genome
will lead to corresponding changes in gene expression levels.
Population-based phasing leverages the haplotype information
from a population reference panel to computationally infer the
phase of variants within an individual’s genome.

Population-derived haplotype information is based on the 1000
Genome hg38 SNP VCF file, 1000 Genome hg38 phasing panel
file, and Eagle2 hg38 genetic map. The BAM file is used to get
SNPs. SNPs were piled up and phased using Cellsnp-lite and
Eagle2, the default settings of Numbat were used for the major-
ity of the analysis, except for two specific parameters: minMAF
and minCOUNT. minMAF stands for the minimum minor al-
lele frequency, and SNPs with a minor allele frequency below 0.1
are considered less informative or potentially unreliable. min-
COUNT represents the minimum read count, and by setting it
to 20, SNPs with a read count below this threshold considered
as a result of sequencing errors or low coverage were excluded.
Subclones were then inferred based on CNV scores and four sub-
clones were detected.

By utilizing PAGA on the expression matrix, we were able to
examine the developmental connectivity and branching patterns
of the identified clones, considering the cellular neighborhoods
and their connections. Based on the prior knowledge of where
the cells were extracted (NAT, tumor, or metastasis), we can com-
pare the inferred clone with the malignancy of cells and get a
better understanding of cancer metastasis. Our analysis revealed
the correlation between the different samples (NAT, primary tu-
mor, and metastatic tumor) and the identified clones (Figure 5a).
Clone 1 may represent a precursor or non-malignant population,
while clones 2, 3, and 4 may be associated with the development
and progression of the primary tumor. Clone 2 served as a con-
nection point as an intermediate state cluster. Clones 3 and 4 ap-
pear to have a specific role in the metastatic process, as evidenced
by their dominance in the metastatic sample.

Upon further examination of the CNV heatmap, we were able
to identify balanced amplification (BAMP) on chromosomes 11,

Figure 4. Mutation and splicing characteristics of malignant epithelial cells. a) Commonly mutated genes within three lineages. Blue: malignant cells,
Orange: non-malignant Epithelium, Green: stroma. The numbers on the right indicate the maximum depth of genes. b) Oncoplot of SNV Variants of
malignant cells and non-malignant epithelial cells. 16 common mutations selected by the intersection of mutation count and depth profiles and top
mutated genes of malignant cells are shown, colored by mutation classification. c) Commonly mutated genes within cancer types compared the stromal
cells and non-malignant epithelium cells. Different colors correspond to different cancer types. d) Mutation variants of snRNAs and their location
in chromosomes, height reflects depth, one point indicates one sample, SNV class is shown in different markers. TOP: Variants in malignant cells;
Bottom: Variants in nonmalignant epithelium). e) Variant counts of snRNAs in different lineages. f) Heatmap of cancer marker transcripts ratio between
malignant cells and nonmalignant epithelial cells. g) UMAP of inferred CSC transcripts expression of malignant cells and nonmalignant epithelial cells.
h) Pseudo transcript expression of ENST00000586826 between malignant cells and nonmalignant epithelial cells.
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12, and 19 as the key events contributing to subclone lineages
(Figure 5b). Amplification of chromosome 12 was observed in
various cancer types and has been implicated in tumor progres-
sion and aggressiveness.[58,59] This amplification event was also
found to be a distinguishing feature between late clones (3 and 4)
and early clones (1 and 2). To gain a better understanding of these
subclones, we performed differential expression analysis on sub-
clones and conducted Gene Ontology (GO) analysis on marker
genes (Figure 5c,d). As an intermediate state, marker genes of
clone 2 were associated with the regulation of epithelial cell prolif-
eration and response to oxygen levels. The cells in clone 2 may be
undergoing alterations in their proliferative capacity and adapt-
ing to changes in oxygen availability, which are common features
of malignant transformation. The presence of cellular response
to cytokine stimulus in clone 2, 3, and 4 suggests an active in-
terplay between the tumor microenvironment and cancer cells.
Clone 4 enriched genes of lipid metabolism, which confers the
aggressive properties of malignant cancers.[60] Particularly, we
found regulation of epithelium cell migration and cilium assem-
bly in clone 3, which appeared more in the metastatic sample.
The association of cilium assembly regulation with clone 3, par-
ticularly in the metastatic sample, suggests a potential role for
primary cilia in promoting the migratory and invasive properties
of malignant cells. In addition to changes in expression level, spe-
cific alternatively spliced transcripts were found for late clones as
well, such as ENST00000469295 of SLC2A3 (Figure 5e).[61] The
presence of specific alternatively spliced transcripts in the late
clones, corresponding to previous splicing analysis, suggested
that distinct isoform level expression provided better malignant
cell signature as they may have distinct functional properties or
regulatory mechanisms compared to the early clones.

Our mutation analysis of different subclones revealed notable
differences in the mutation profiles. We observed that clones 3
and 4 showed a significant increase in the number of mutations
compared to clones 1 and 2, indicating a higher mutational
burden in malignant subclones (Figure 5f). The well-known
cancer pathways affected can be observed in multiple subclones
(Figure 5g). Specifically, we observed that clone 3 had a higher
frequency of tumor suppressor gene mutations within the TP53
pathway than clone 4 (Figure 5h). Mutations in the ATM and
CHEK2 have been associated with the development of various
cancers, including breast cancer, lung cancer, pancreatic cancer,
prostate cancer, and colorectal cancer.[62,63] The presence of ATM
and CHEK2 mutations in the metastasis clone suggests potential
implications for the metastatic process. These mutations may
confer selective advantages to cancer cells, allowing them to
evade DNA damage checkpoints and acquire characteristics that
promote metastasis, such as increased proliferation, survival,
and resistance to therapy. In addition, we identified mutations
in epigenetic regulation genes,[64] such as KMT2D, KMT2E,
SMYD3, ASH1L, KMT2C, and KMD4B, in the tumor clones
(Figure 5i). These findings suggested potential alterations in

chromatin structure and gene regulation processes. Mutations
in KMT2D have been identified in various cancer types and are
associated with altered gene expression profiles and disrupted
cellular differentiation.[65] KMT2E is another member of the
KMT2 family of histone methyltransferases. Although its pre-
cise role in cancer is still being elucidated, emerging evidence
suggests that KMT2E may play a role in cell cycle regulation and
tumor progression.[66] Notably, SMYD3, which accumulated in
clone 2, is a histone methyltransferase that contributes to the
regulation of gene expression through histone methylation.[67]

It has been shown to promote tumor growth and metastasis by
altering gene expression patterns and affecting signaling path-
ways involved in cell proliferation and invasion. In addition, late
clones were observed to have mutations specifically in ASH1L,
KMT2C[68] and KMD4B.[69] The accumulation of mutations in
these epigenetic regulatory genes, particularly in late clones,
suggests that these modifications may provide tumor cells with
selective benefits, allowing them to bypass growth and survival
hurdles.

These results provide insights into the clonal evolution of tu-
mors, highlighting that a comprehensive understanding of tu-
mor metastasis requires a multidimensional analysis that goes
beyond gene expression levels. By integrated analysis of CNV,
expression, mutations, splicing, and potential epigenetic alter-
ations, researchers can gain a more comprehensive understand-
ing of the molecular landscape of metastatic tumor cells. Future
research needs to consider these various aspects and explore the
interconnections between them, as they collectively contribute to
the metastatic phenotype.

3. Discussion

In this study, we present a high-throughput and high-sensitivity
platform, snHH-seq, for single-nucleus total RNA sequencing.
The preindex strategy was employed to increase the throughput
and facilitate the multiplexed analysis of clinical samples. The
use of random primers increases the sensitivity of nucleus-based
analysis and lowers the requirement for sample collection and
storage. Additionally, snHH-seq is compatible with commonly
used single-cell sequencing methods, making it accessible to lab-
oratories worldwide. Supported by the throughput and sensitivity
of snHH-seq, we profiled the transcriptome of cryopreserved
pan-cancer samples and formed a single-cell transcriptome
database to reveal the clinically relevant cell types in tumors.

In essence, RNA-seq is a primer-based detection method (both
probe and RT primer). The choice of primer determines which
transcripts we can detect in a cell. In this study, we used random
primers to capture total RNA in nuclei thus allowing the analy-
sis of more genes of different types, particularly lncRNA, snRNA,
and pseudogene. We also found that the read distributions form
the peaks and exhibit a kind of RNA accessibility, which may
be due to PFA crosslinking or uneven distribution of the bases

Figure 5. Clone analysis of COAD sample. a) UMAP of COAD sample, cluster connectivity indicated by PAGA. Left: Color of Numbat Clones. Right:
Color of Sample types. b) Numbat inferred CNV profiles for 4 clones colored by posterior possibility, balanced amplifications (bamp) on chromosomes
11, 12, and 19 were detected as key events contributing to the subclone lineages. c) Differential expression of 4 Numbat clones. d) Gene ontology (GO)
enrichment of four inferred clones using Metascape, top100 GOs are shown. e) Heatmap of cancer marker inferred transcripts ratio between early clones
(Clones 1 and 2) and late clones (Clones 3 and 4). f) Profiles of mutation counts among 4 clones, values were z-score normalized to 0. g) Well-known
pathway affected in COAD sample in terms of the fraction of affected genes and fraction of affected samples. h) TP53 pathway and affected mutated
genes, red color indicates tumor suppressor gene. i) Epigenetic mutation occurring in clones.
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on the genome. So, there is room for optimization in capturing
primers and fixing reagents.

The preindex strategy by in situ RT has been applied in several
studies. In snRandom-seq,[11] five barcodes were used to reduce
the contamination rate of the species-mixing experiment without
overloading, thereby reducing the requirement for the stability
of the microfluidic device. The scifi-RNA-seq assay[16] increases
the throughput and facilitates the multiplexed analysis. When
compared with scifi-RNA-seq, our preindexed high-throughput
method does not require the inefficient ligation step, and thus
ensures both throughput and detectability. Moreover, the prein-
dex is not as simple as adding a barcode on RT primer. We ob-
served that excessively long primers (with PCR/ligation handle,
barcode, and RNA capture oligo) reduce the efficiency of in situ
reverse transcription, which may explain the low gene number
in scifi-RNA-seq. So, we used bulk in situ RT to screen ≈800 bar-
codes and obtained 136 barcodes with high efficiency of reverse
transcription. Overloading nuclei in microfluidics increases cell
throughput, and also poses new challenges to the conventional
microfluidic platform. In future research, we will optimize the
chip design and density gradient concentration to reduce nuclear
adhesion and sedimentation during nuclei overloading, thereby
improving nuclei recovery rate.

snHH-seq provides a novel and comprehensive analytical
repertoire for pan-cancer investigations. Our study analyzed a to-
tal of 735 722 nuclei obtained from 32 patients across nine differ-
ent tumor types. The nuclei were then clustered into 43 distinct
cell clusters, which were further categorized into six major cell
types: epithelial cell, endothelial cell, stromal cell, immune cell,
neuron, and glial cell. To gain a deeper understanding of TME
heterogeneity, we performed subclustering analyses on endothe-
lial cells, myeloid cells, and stromal cells from different patients.

In addition to the general analyses above, we conducted a
novel investigation into the malignant status of epithelial cells
in various cancer samples. No prior studies have delved into the
commonalities across different cancer types by subtyping malig-
nant cells at a pan-cancer level. By integrating data from over
300 000 malignant cells derived from seven epithelial-origin can-
cers, we captured the intricate transcriptional patterns associ-
ated with malignant cell proliferation. Our findings, particularly
the identification of several malignant cell proliferation-specific
ncRNA, contribute to the advancement of this field. Additionally,
we found malignant cells with high expression of cilia-related
genes. Ciliated-like malignant cells have been observed in tis-
sues that contain normal ciliated cells.[38] However, the pres-
ence of ciliated-like malignant cells in tissues lacking normal
ciliated cells, which has not been reported previously, suggests
that ciliated-like malignant cells may represent a novel subcluster
emerging during tumorigenesis or progression. Further investi-
gation is required to not only validate their presence at the protein
level but also elucidate their origin and function in cancer. Over-
all, our study provides valuable insights into the mechanisms un-
derlying malignant cell behavior, which could ultimately lead to
improved cancer detection and treatment strategies. Future stud-
ies could leverage the availability of public datasets to cluster and
investigate malignant cell subclusters at a larger scale, such as
the inclusion of thousands of datasets.[70]

Total RNA sequencing of snHH-seq presents an opportunity
to explore the somatic mutations and copy number variations

in cancer development and progression, affecting vital signaling
pathways, cellular processes, metabolic functions, and splicing
patterns. Notably, mutations in snRNAs and splicing isoforms
have been identified, highlighting the significance of splicing
dysregulation in tumorigenesis. Moreover, to gain insight into
tumor metastasis, we conducted a clonal study on a metastatic
COAD sample and identified four subclones. The accumula-
tion of mutations in epigenetic regulation genes, particularly
in late clones, suggests that these alterations may confer selec-
tive advantages to tumor cells, allowing them to overcome barri-
ers to growth and survival. These mutations may provide cells
with increased adaptability, enhanced invasive potential, or re-
sistance to therapy, thereby contributing to the aggressiveness
and metastatic behavior of the tumor. Understanding the role
of epigenetic dysregulation in tumor clones can provide insights
into potential therapeutic targets and strategies aimed at restor-
ing normal epigenetic control and inhibiting tumor progression.

In summary, we demonstrate the value of high-resolution
single-cell full-length transcriptomic sequencing for identifying
novel tumor biomarkers and provide a detailed analysis pipeline
for full-length single-cell sequencing. Our comprehensive analy-
sis approach involves examining gene expression, somatic muta-
tions, splicing patterns, and clonal behavior. By leveraging these
diverse perspectives, we can identify specific variants that are
linked to cancer-associated genes and cell types. This project rep-
resents a significant advancement in our ability to understand
the underlying genetic mechanisms across cancers. Ultimately,
these findings deepen our understanding of tumor biology and
pave the way for more effective diagnostic and therapeutic ap-
proaches.

4. Experimental Section
Ethics Statement: The collection of human samples and research con-

ducted in this study was approved by the Research Ethics Committee of
the First Affiliated Hospital (approval numbers: IIT20210078B), the Sec-
ond Affiliated Hospital (approval numbers: IR2022519), and Zhejiang Can-
cer Hospital (approval numbers: IRB-2022-642). Informed consent for col-
lection and research using surgically removed adult tissues was obtained
from each patient before the operation. Details on donor information are
provided in Table S1 (Supporting Information). All the protocols used in
this study were in strict compliance with the legal and ethical regulations
of Zhejiang University School of Medicine and Affiliated Hospitals. All the
protocols used in this study complied with the “Interim Measures for the
Administration of Human Genetic Resources” administered by The Min-
istry of Science and Technology and The Ministry of Public Health. Mouse
experiments in this study were approved by the Animal Ethics Commit-
tee of Zhejiang University (ZJU20210079); experiments conformed to the
regulatory standards at Zhejiang University Laboratory Animal Center.

Nuclei Suspension Preparation (Culture Cell): HEK293T and NIH/3T3
cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)
supplemented with 10% Fetal Bovine Serum (FBS, Thermo) and 1%
penicillin-streptomycin (Gibco). Cells were cultured in the six-well culture
plates (Corning) in an incubator with humidified air and 5% CO2 at 37 °C
and passaged every 2–3 days using 0.25% Trypsin-EDTA (Gibco). Cells
were harvested by trypsinization and washed twice using cold Dulbecco’s
Phosphate-Buffered Saline (DPBS, Corning). Then 2× 106 mixed cells (1:1,
HEK293T and NIH/3T3) were resuspended in 2 mL ice-cold Lysis Buffer
(LB, 0.1% IGEPAL CA-630 (Sigma), 1% RNA Inhibitor (Vazyme), 0.1%
Tween-20 (Diamond), 10 mm Tris-HCL pH 7.5 (Thermo), 10 mm NaCl
(Sangon), 3 mm MgCl2 (Sigma) in ddH2O). The lysis was performed on
ice for 5 min. The nuclei were centrifuged at 500 g for 5 min and resus-
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pended in 2 mL ice-cold Wash Buffer (WB, 1% RNA Inhibitor, 0.1% Tween-
20, 10 mm Tris-HCL pH 7.5, 10 mm NaCl, 3 mm MgCl2 in ddH2O). Nuclei
were washed twice with WB and resuspended with 5 mL 4% PFA (RNase
Free). Nuclei were incubated on ice for 30 min. Then 750 μL 2.5 m Glycine
(Diamond) was added to quench the reaction and the mixture was placed
on ice for 10 min to stop cross-linking completely. The fixed nuclei were
washed twice using WB and filtered through a 10-μm strainer to remove
clumps. The nuclei were processed to single nuclei RNA-seq according to
the following snHH-seq protocol.

Nuclei Suspension Preparation (Tissue Cell): Frozen human tumor sam-
ples were requested from the First Affiliated Hospital of Zhejiang Uni-
versity, the Second Affiliated Hospital of Zhejiang University, and Zhe-
jiang Cancer Hospital, with the sample information summarized in Table
S1 (Supporting Information). Wild-type C57BL/6J male mice (6–8 weeks)
were ordered from Shanghai SLAC Laboratory Animal Co., Ltd. All mice
were housed at Zhejiang University Laboratory Animal Center in a Spe-
cific Pathogen Free facility with individually ventilated cages. The mouse
brain was collected and washed in ice-cold DPBS. Tissues were dissoci-
ated by smashing in liquid nitrogen and suspended in LB. The lysis was
performed on ice for 5 min and the suspension was then filtered through
a 10-μm strainer to remove clumps. The nuclei were washed and fixed as
mentioned above.

Microfluidic Device Design and Fabrication: The microfluidic devices
were designed and custom-made by M20 Genomics company based on
the work by Zilionis et al.[17] The channel depth of devices is 50 μm for
cell encapsulation, and 30 μm for hydrogel beads. Microfluidic devices
were fabricated using polydimethylsiloxane (PDMS) according to the pro-
tocol described.[71] The equipment of the microfluidic platform includes
microfluidic devices, three syringe pumps (Pump 11 Elite 4500 and 4501),
a syringe (BD Luer-lok Tip, 1 mL), and Micro Medical Tubing (Scientific
Commodities, I.D. x O.D. x L: 0.015′’ x 0.043′’ x 100 feet.), and an inverted
bright-field microscope with a fast speed camera (FLIR) and a computer.

Barcoded Bead Synthesis for snHH-Seq: As previously described,[11]

the barcoded hydrogel beads were produced by M20 Genomics com-
pany. Hydrogel beads were synthesized by the microfluidic emulsifica-
tion and polymerization of an acrylamide-primer mix. In this study, the
acrydite-modified oligonucleotides contain a deoxy Uridine base. There-
fore, the primers can be released to capture the cDNA by USER enzyme
(NEB). After hydrogel bead production, three rounds of split-and-pool lig-
ation in the 96-well plate were performed for barcoding (Table S3, Sup-
porting Information).[11] The ligation mixture, including hydrogel bead,
DNA ligase (Vazyme, 350 U mL−1), 1 x T4 buffer, and nuclease-free wa-
ter was prepared and then split into a round-bottom 96-well plate. The
hydrogel beads were mixed with 96 annealed unique barcode primers
(Bead_ligation_1F/R, Bead_ligation_2F/R, Bead_ligation_3F/R) in 96-well
plate, respectively, then incubated at 37°C for 30 min. All the required
reagents for hydrogel barcoded beads synthesis and the ready-to-use hy-
drogel barcoded beads can be ordered from M20 Genomics company.

snHH-Seq Procedure: The fixed nuclei were counted and suspended
in a reverse transcription mixture (RT mix). For a 96-well plate reac-
tion, 110 x RT mix was prepared: 55 μL 10 mm dNTP, 484 μL RT buffer,
55 μL RNA Inhibitor (Vazyme), 55 μL Reverse Transcriptase, 341 μL WB
(with nuclei). The reverse transcription kit was included in the VITAPilote-
EFT1200 kit (Cat # R20122124) ordered from M20 Genomics. Both nuclei-
RT mix (≤50 000 nuclei, 9 μL per well) and 10 μm well-specific barcoded
RT primers (1 μL per well) (Table S3, Supporting Information) were dis-
tributed to each well of the 96-well plate and stirred gently with the pipette
tip. The reaction mix was incubated with the thermal cycling: (8 °C for
12 s, 15 °C for 45 s, 20 °C for 45 s, 30 °C for 30 s, 42 °C for 2 min) x 10 cy-
cles, 42 °C for 45 min. After the reaction, all nuclei were collected, mixed,
and washed using PBST (PBS, 0.05% Tween 20) three times to remove
the residual primers. After washing, nuclei were suspended in TdT mix-
ture (100 000-1 000 000 nuclei per reaction, 39 μL nuclei in PBST, 5 μL 10
x TdT buffer (NEB), 5 μL CoCl2 (NEB), 0.5 μL 100 mm dATP (Invitrogen),
0.5 μL TdT enzyme (NEB)). The TdT reaction mix was incubated at 37 °C
for 30 min. After reaction, nuclei were washed using PBST three times. The
nuclei were counted and diluted to 2000–8000 nuclei μL−1 using OptiPrep
(Stem Cell). DNA extension reaction mixture was prepared (for 80 μL):

40 μL ddH2O, 16 μL thermopol buffer, 6 μL 10 mm dNTP, 6 μL BST 2.0
Warmstart (NEB), 6 μL RnaseH (NEB), 6 μL USER (NEB). Nuclei, 2 x DNA
extension reaction mixture (M20 Genomics, VITAPilote-EFT1200 kit), and
barcoded beads were encapsulated into droplets using the microfluidic
platform as previously described.[11] All the required reagents for droplet
reaction can be ordered from M20 Genomics company. The flow rates:
200 μL h−1 for nuclei/reaction mixture; 500 μL h−1 for oil; 50 μL h−1 for
bead. The mean value of droplet volume is 0.48 nL (mean diameter is
96.9 μm). The droplets (20–50 μL per tube) were incubated at 37°C for
1 h, 50 °C for 30 min, 60 °C for 30 min, 75 °C for 20 min. Then the droplets
were broken by mixing with equal amounts of 20% PFO (1H,1H,2H,2H-
Perfluoro-1-octanol, Sigma). The supernatant was collected after centrifu-
gating and purified with 1.2 x DNA Clean Beads (Vazyme) and eluted in
40 μL ddH2O. Two rounds of PCR were performed to amplify cDNA and
add sequence adapters (Table S3, Supporting Information). The amplified
libraries were purified with 0.8 x DNA Clean Beads and quantified using
Qubit (Invitrogen). Circularization was performed to obtain a sequencing
nanoball library for MGI DNBSEQ using VAHTS Circularization Kit for MGI
(Vazyme, NM201). Library sequencing was performed using DNBSEQ-T7
with paired-end reads of 100 or 150 bp.

Species-Mixing Experiment Data Processing: First, primer sequences
and extra bases generated by the dA-tailing step were trimmed in raw se-
quencing data. Then UFI (8 nts) and cell barcode (30 nts) were extracted
from each read1, and 10 nts prebarcode was extracted from read2 and
merged the sequenced barcodes that were uniquely assigned to the same
accepted barcode with a Hamming distance of 2 nts or less. Next, read2
was used to generate the gene expression matrix with the STARsolo mod-
ule in STAR (2.7.10a) with reasonable parameters. To determine the num-
ber of nuclei in each sample, the scattergram of log10(genes) was plotted
for each possible barcode and used the position of the minimum with
the highest value of log10(genes) as the threshold: only barcodes with the
number of genes above this threshold were used for downstream anal-
ysis. Barcodes with more than 25% of detected UFIs belonging to other
species were considered doublets/mixed. The remainder were assigned
to either humans or mice. The FASTQ files were obtained for HEK293T
and NIH/3T3 sequencing with 10x Genomics Chromium version 3.1 on
their dataset page and VASA-drop from GEO (GSM5369496). For gene
detection saturation, the top 50 cells with the most read sequenced were
used. Down sampling and gene counting were carried out on the bam file,
in which only uniquely mapped genes were involved. For gene body cover-
age, RSeQC was used to calculate read count coverage, and the percentage
of covered reads among total reads was used for the plotting.

Tissue Sample Data Preprocessing: For each sequencing library, the
poly-A tail was trimmed from each raw sequencing read using Cutadapt.
Subsequently, real cells were identified based on the number of reads per
cell, utilizing a manually defined minimal read cutoff determined by the
results of the UMI-tools whitelist function. Reads were then aligned to the
GRCh38 reference genome using the STAR 2-pass mode, and only uniquely
mapped reads were retained. Each read was assigned to its corresponding
gene using the “gene” tag within the GRCh38 GTF by employing feature
Count. The digital gene expression (DGE) was generated using the UMI-
tools count function. Batches were defined as each sequencing library for
each patient. For each batch, quality control (QC) was performed using
Scanpy. Low-quality cells or potential doublets were removed by applying
a manually defined cutoff for the number of UFIs and genes per cell, and
genes expressed in less than 0.25% of the cells were also removed.[72]

Cell Type Annotation: Expression analysis was performed using
Scanpy. The cells from each patient were normalized and scaled. PCA was
calculated and corrected using Harmony to remove potential batch effects,
with the sequencing library set as the batch label. The top 40 principal com-
ponents (PCs) were used to construct a nearest neighbor graph, with the
n_neighbors parameter set to 10. Cell clustering was performed using the
Leiden algorithm with a resolution of 0.4. The resulting clustering results
were visualized using UMAP. Manual annotation of each cell cluster was
carried out using canonical markers. The canonical markers were obtained
from several high-quality research papers, and the full list of these canon-
ical markers is provided in Table S2 (Supporting Information). For the an-
notation of each cell cluster, the gene intersection of these canonical mark-
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ers and the top 100 markers identified by the Scanpy rank_genes_groups
function was used.

Correlation Analysis Between Microwell-Based scRNA-Seq and snHH-Seq
Profiles: To correlate the snHH-seq with the microwell-based scRNA-seq,
their gene expression profiles were transformed into pseudo-bulk expres-
sion profiles. For each broad cell type, their gene expression data was first
extracted and calculated the CPM for each cell (nucleus) with the ‘Nor-
malizeData‘ function (normalization method = “RC”; scale factor = 1e6)
in the Seurat R package. Then, the CPMs for each gene were averaged row-
wise (across each cell (nucleus)) for each broad cell type separately. The re-
sulting pseudo-bulk expression profiles for both snHH-seq and microwell-
based scRNA-seq were then log2-transformed. In this analysis, protein-
coding genes and long noncoding RNAs (lncRNAs) were focused. The
complete human gene set was retrieved through the Ensembl database
(GRCh38.p13) with the BiomaRt R package. In addition, all the protein-
coding genes and lncRNAs that we used had a mappability score>0.9. The
mappability scores for GRCh38 were calculated by GenMap v1.3.0, follow-
ing the instructions on its Github page (https://github.com/cpockrandt/
genmap). The Spearman correlation between the Microwell-based scRNA-
seq and the snHH-seq profiles was then computed separately for protein-
coding genes and lncRNAs. The residual for each gene was calculated by
using the “resid” function in R, after fitting a linear model to the snHH-
seq and microwell-based scRNA-seq data with the formula “lm (microwell-
based scRNA-seq – snHH-seq ∼ 0)”. The divergent genes were defined as
the genes with residual values greater than 97.5th or less than the 2.5th
percentile.

Relationship Between Poly-A Content and Gene Length: A poly-A unit
as one stretch of at least 20 consecutive adenine “A” bases in a gene’s se-
quence was defined. The BSgenome.Hsapiens.UCSC.hg38 R package was
used to search such units for each gene in the human genome. The to-
tal poly-A units with the gene length for microwell-based scRNA-seq and
snHH-seq separately using the ggplot2 R package were then plotted.

Mapping Microwell-Seq and snHH-Seq Cell Annotation with a Random
Forest Classifier: To further validate the snHH-seq method, Here, wanted
to see whether the major cell-intrinsic programs can be well preserved
between the well-validated microwell-based method and the snHH-seq
method. For this aim, a multiclass random forest classifier on the snHH-
seq data and its cell annotation with the “randomForest” function from
the randomForest R package were trained. Then the “predict” function was
used to reannotate the microwell-based scRNA-seq data and compare the
prediction with the original annotation. The resulting confusion matrix was
plotted with the “pheatmap” function (scale = “row”) from the pheatmap
R package. To train the random forest model, the top 3000 highly variable
genes that were derived with the “FindVariableFeatures” function (“vst” as
the selection method) from the Seurat R package were used. In addition,
only shared broad cell types between the two methods were included.

Comparison of Tissue Dissociation-Induced Stress Signature Scores: Ac-
cording to a previous study, tissue dissociation is reported to induce gene
expression changes which may affect the results of single-cell RNA-seq
projects.[73] With the published set of genes that are likely to be affected
by dissociation, the dissociation signature for each shared broad cell type
in the microwell-based scRNA-seq and snHH-seq dataset with the “Ad-
dModuleScore” function in the Seurat R package was scored. The input
gene expression profiles for both microwell-based scRNA-seq and snHH-
seq were normalized with the “NormalizeData” function in the Seurat R
package with all default settings and then log-transformed.

Comparison of Transcript Fractions Mapped to Different Types of Genes:
To compare the microwell-based scRNA-seq and snHH-seq profiles, the
distribution of transcript fractions that were mapped to different types of
genes for the two methods was plotted. all the detected genes were di-
vided into five broad groups: protein-coding genes, transcription factors,
lncRNAs, non-polyadenylated genes, and short noncoding RNAs (sncR-
NAs). The protein-coding gene, sncRNA, and lncRNA annotations were
retrieved from the GRCh38 GTF file. The set of transcription factors was
retrieved with the “dorothea_hs” function in the Dorothea R package. The
set of non-polyadenylated RNAs was downloaded from the supplementary
data provided by Yang et al.[9] The plots were generated with the ggplot2 R
package.

CNV Inference and CNV Score: The InferCNV package was applied to
infer the CNVs. For each patient, inferCNV was executed with a default
cutoff of 0.1, utilizing annotated nonepithelial cells (non-glial cells for
Glioma) such as macrophages, endothelial cells, and stromal cells from
the corresponding tissue. To calculate the CNV score for each cell, the
inferCNV results were imputed by incorporating the CNV results of the
cell itself and its eight adjacent cells, as determined by the neighborhood
graph of clustering results from each patient. The imputed CNV results
were then categorized into three levels (2/1/0/1/2) based on predefined
intervals: [0.9, 0.95, 0.98, 1.02, 1.05, 1.1], [0.85, 0.925, 0.97, 1.03, 1.075,
1.15], or [0.8, 0.9, 0.96, 1.04, 1.1, 1.2], considering the distinct upper and
lower limits of inferCNV results. Finally, the CNV score for each cell was
determined by calculating the average of the imputed CNV scores across
all genes associated with that particular cell.

Malignant Cell Identification: All analyses were performed using the
Python package Scikit-learn. For each tissue, the imputed inferCNV results
obtained from the annotated epithelial cells (or annotated glial cells for
Glioma) of each patient were extracted and merged. Dimensionality reduc-
tion was then conducted to convert CNV scores to 50 PCs using the PCA
function. The resulting cell-by-PC matrix was then employed for hierarchi-
cal clustering, using the pdist and linkage functions. Hierarchical clusters
were visualized using the dendrogram function, and the final clusters were
defined using the fcluster function. Clusters characterized by relatively low
CNV scores and a mixture of cells from different patients were identified
as nonmalignant cells for the respective tissue, while the remaining cells
were classified as malignant.

Integration of Malignant Cells and Nonmalignant Cells: The integra-
tion of malignant cells was performed using Harmony (𝜃 = 6) with
the cancer type specified as the batch label. Before integration, tissue-
specific genes were identified using Seurat’s FindConservedMarkers func-
tion (logFC > 0.25, p < 0.05, min.pct > 0.25) and subsequently removed
from the expression matrix. The clustering step was carried out using the
following parameters: pc = 30, resolution = 0.4, and neighbor = 30. For
the integration of nonmalignant cells, including endothelial cells, stromal
cells, and monocytes, the Seurat SCTransform method was employed.
Cancer type was designated as the batch label, and the analysis utilized
pc = 30 and resolution = 0.5 as the settings.

Exon Percentage: Exon-only DGE was generated by using the “exon”
tag in the feature count step. The exon percentage for each gene was cal-
culated by dividing the UFI count within the original DGE by the UFI count
within the exon-only DGE.

Cell Cycle Assigning: Proliferated non-malignant epithelial cells were
identified by integrating all nonmalignant epithelial cells using Harmony
(𝜃 = 3) with the following settings: pc = 30, resolution = 0.2, and
neighbor = 30. As previously mentioned, tissue-specific genes were re-
moved before the integration process. To assign cell cycle phases for
both malignant and non-malignant epithelial proliferated cells, the Scanpy
score_genes_cell_cycle function was utilized.

Differentially Expressed Gene Identification: Differentially expressed
genes (DEGs) were identified using the Seurat FindMarker and FindCon-
servedMarker functions.

• Malignant cell DEGs for each cancer were identified using FindMarker
(pct > 0.1, adj.p < 0.01, logFC > 1, pct.1 – pct.2 > 0) with the removal
of patient and sample (tumor or NAT)-specific genes (FindConserved-
Marker, pct > 0.25, p < 0.05, logFC > 0.5, pct.1 – pct.2 > 0.1).

• For each cancer subcluster, marker genes were identified using Seu-
rat FindMarker with the following cutoff: pct > 0.25, adj.p < 0.01,
logFC > 0.5, pct.1 – pct.2 > 0.

• Cell cycle phase-specific DEGs for each tissue were identified using
FindMarker (pct > 0.25, adj.p < 0.01, logFC > 1, pct.1 – pct.2 > 0.1)
with the removal of patient and sample (tumor or NAT)-specific genes
(FindConservedMarker, pct > 0.25, p < 0.05, logFC > 0.5, pct.1 –
pct.2 > 0.1). Furthermore, only DEGs that were also up-regulated
compared with quiescent cells were retained (FindConservedMarker,
pct > 0.25, p < 0.05, logFC > 0.5, pct.1 – pct.2 > 0.1).
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• DEGs between malignant ciliated-like cells and non-malignant ciliated
cells in the lung were identified using FindConservedMarker (pct> 0.25,
p < 0.05, logFC > 0.5, pct.1 – pct.2 > 0.1).

Gene Regulatory Network Inference: The gene regulatory network was
inferred using pySCENIC with default settings. The subsampled DGE con-
tained 1000 cells per cancer type from 10 pan-cancer groups, and 1000
cells per patient for nonmalignant epithelial cells were used as input. Dif-
ferentially expressed transcription factors were identified using the Seurat
FindMarker function.[74]

Somatic Mutation Calling: To examine the difference in somatic mu-
tation signatures among different lineages, 1000 stromal, epithelial, and
cancer cells per patient to avoid the effect of different sample sizes were
randomly sampled. Additionally, 1000 cells per cancer type from ten pan-
cancer groups detected by Leiden were sampled and used for compar-
ison. The practical guidelines provided by Mutect2 (Somatic short vari-
ant discovery (SNVs + Indels) – GATK (broadinstitute.org)) to call so-
matic mutations were applied. Basic preprocessing included adding read
groups, mark duplicates, and split reads that contained Ns in their CIGAR
strings, and the default setting was applied. Several known mutation ref-
erence sites from the GATK resource bundle (https://gatk.broadinstitute.
org/hc/en-us/articles/360035890811-Resource-bundle) and dbSNP were
provided for BQSR.[75] The tumor-only mode for somatic calling with hg38
was used as the genome reference and provided a 1000 panel of normal
samples. A strict filtering strategy was applied to select good-quality so-
matic mutations; specifically, orientation bias artifacts and contamination
were excluded, the sum depth of the reference allele and alternate allele
was larger than ten, and at least three alternate alleles were detected. Fun-
cotator was applied to annotate the detected somatic mutations. The an-
notated maf file was analyzed by maftools in R. On average, 440 mutated
genes per 1000 malignant cells per patient and 308.5 mutated genes per
1000 nonmalignant epithelial cells per patient with C to T as the most
frequent SNV class and NEAT as the most mutated gene were counted
(Figure S8d,e, Supporting Information).

Splicing Transcript Analysis and Generation of the Pseudo-Transcript Ex-
pression Matrix: The alignments from STAR were used to collect and
quantify isoform proportions for cancer genes (CSC gene source: cosmic
census[76]) using DICEseq, which is a Bayesian method based on a mix-
ture model whose mixing proportions represent isoform ratios. For can-
cer cells, the Leiden groups detected in pan-cancer analysis were used as
pseudo-bulk RNA-seq groups. With 7 cancer types in total, for each cancer
type, there were ten pseudo-bulk RNA-seq groups. Matched NAT samples
were calculated per patient base. There were two types of isoform pro-
portion matrix results, cancer type, and epithelium type, and the matrix
was the isoform proportion for the pan-cancer cluster or epithelial group.
Pseudo-transcript expression based on the isoform proportion and raw ex-
pression matrix by multiplying the related portion in that group was gen-
erated.

Somatic Mutation Analysis: The resulting annotated file was stored in
mutation annotation format (maf). The mutation count matrix was ex-
tracted by mutCountMatrix() of maftools. PCA components were calcu-
lated from the integrated mutation count matrix of patients and used
to perform correlations. To select commonly mutated genes among dif-
ferent cancer types, A Wilcoxon test was performed on variant counts
of the malignant group, stromal group, and nonmalignant epithelial
group to obtain significantly mutated genes with logfold changes >20.
Four inputs included the number of mutation loci per gene (count per
gene) per sample and the depth of mutations per gene (depth per gene)
per sample by patient level or per cluster level. Nonsynonymous muta-
tions and synonymous mutations were both included. Synonymous mu-
tations were included by using argument vc_nonSyn in read.maf to in-
clude different kinds of variant classifications (“3′UTR”, “RNA”, “5′Flank”,
“Missense_Mutation”, “IGR”, “Silent”, “5′UTR”, “Nonsense_Mutation”,
“Splice_Site”, “Translation_Start_Site”, “Nonstop_Mutation”, “Intron”).
Sixteen common significantly mutated genes were detected with four ap-
proaches (Figure S8a, Supporting Information). Overall, intronic mutation
and bases substitution C>G ranked the main variant classification and

SNV class. Median variants per sample in cancer was 440, higher than
308.5 in epithelial cells (Figure S8b, Supporting Information).

Malignant Cell Subclone Identification: For the case study of the
COAD_p1 sample, the R package Numbat to identify malignant cell sub-
clones was utilized. Initially, SNPs were piled up and phased using Cellsnp-
lite and Eagle2 with numbat default settings, except for minMAF = 0.1
and minCOUNT = 20 to increase the accuracy of SNP identification. The
input consisted of a BAM file containing malignant and non-malignant
epithelial cells from COAD_p1 as well as the 1000 Genome hg38 SNP
VCF file, 1000 Genome hg38 phasing panel file, and Eagle2 hg38 genetic
map. CNV-based subclones were inferred using the run_numbat function
with endothelial cells, macrophages, fibroblasts, and immune cells from
COAD_READ as a reference.
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the author.
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